
UNIX at Fermilab TOC-1

Table of Contents

Chapter 1: Introduction to UNIX at Fermilab . 1-1
1.1 Computer Security at Fermilab . 1-1

1.1.1 Strong Authentication and Kerberos v5 . 1-1
1.1.2 Fermilab Policy and Your Responsibilities 1-2
1.1.3 Conditions of Use for Federal Computers 1-2

1.2 A Few Words about UNIX . 1-2
1.2.1 Variations of the UNIX OS . 1-3
1.2.2 UNIX OS Components . 1-3

1.3 The Fermi UNIX Environment (FUE) and Product Support 1-3
1.3.1 CoreFUE . 1-4
1.3.2 FullFUE . 1-4
1.3.3 The Login Files for FullFUE . 1-4
1.3.4 The Command Prompt . 1-5

1.4 File Systems: Standard UNIX and AFS . 1-6
1.4.1 Standard UNIX File System . 1-6
1.4.2 AFS File System . 1-6

Chapter 2: Principals, Accounts and Passwords . 2-1
2.1 Choose and Obtain a Kerberos Principal and Password 2-1

2.1.1 Kerberos Principal . 2-1
2.1.2 Kerberos Password . 2-2

2.2 Obtain a Computer Account . 2-2
2.3 Other Passwords . 2-3

2.3.1 The Standard UNIX Password . 2-3
2.3.2 The Standard UNIX Password . 2-3
2.3.3 The AFS Password . 2-4
2.3.4 UNIX and AFS Password Recommendations 2-5

2.4 Changing Passwords . 2-5
2.4.1 Your Kerberos Password . 2-5
2.4.2 Your UNIX Password . 2-5
2.4.3 Your AFS Password . 2-6

Chapter 3: Logging into UNIX Systems at Fermilab 3-1
3.1 Overview . 3-1

3.1.1 About Logging in and Authenticating to Kerberos 3-1
3.1.2 About Forwarding Kerberos Tickets . 3-2

3.2 Logging In at the Console of a Kerberized UNIX Machine 3-3

TOC-2 UNIX at Fermilab

3.2.1 Using Standard UNIX Login Program . 3-3
3.2.2 Using Kerberos Login Program . 3-3
3.2.3 If you don’t have a principal yet... 3-4

3.3 Connecting from One Kerberized Machine to Another 3-4
3.4 Connecting from Off-Site . 3-5
3.5 Connecting from a NonKerberized Machine to Kerberized Host 3-5

3.5.1 About Portal Mode . 3-5
3.5.2 Log in via CRYPTOCard . 3-6

3.6 Logging Out . 3-6

Chapter 4: Information Resources . 4-1
4.1 The Fermilab Helpdesk . 4-1
4.2 UNIX On-Line Help . 4-2

4.2.1 man Pages . 4-2
4.2.2 Finding the Right Command . 4-5
4.2.3 Vendor Product Documentation . 4-6

4.3 The Internet . 4-6
4.3.1 The World Wide Web . 4-7
4.3.2 UNIX Help on the Web . 4-9
4.3.3 Newsgroups . 4-10

4.4 The Info Utility . 4-10
4.5 Other Users: WWW Directories, finger and who 4-11

Chapter 5: Shells . 5-1
5.1 Introduction to Shells . 5-1

5.1.1 Determining Your Current Shell . 5-1
5.1.2 Starting a Shell . 5-2
5.1.3 Exiting a Shell . 5-3

5.2 Features of Available Shells . 5-3
5.3 Supported/Recommended Shells at Fermilab . 5-5
5.4 Shell Scripts . 5-5
5.5 Other Interpretive Programming Languages . 5-7

Chapter 6: Important UNIX Concepts . 6-1
6.1 Processing Environment . 6-1

6.1.1 Programs, Commands and Processes . 6-1
6.1.2 Command Interpretation by the Shell . 6-3

6.2 Command Entry . 6-4
6.2.1 Command Format . 6-5
6.2.2 Miscellaneous Command Line Features . 6-6

6.3 Command Recall . 6-6
6.4 Important Concepts . 6-9

6.4.1 Path . 6-9
6.4.2 Standard Input and Output Redirection . 6-10
6.4.3 Pipes . 6-13
6.4.4 Filters . 6-13
6.4.5 Regular Expressions . 6-17

6.5 Job Control . 6-18

UNIX at Fermilab TOC-3

6.5.1 Priority . 6-19
6.5.2 Background, Foreground, and Suspended Jobs 6-19
6.5.3 Scheduling Jobs: at and cron . 6-21

Chapter 7: The UNIX File System . 7-1
7.1 Directory Structure . 7-1

7.1.1 Pathnames . 7-1
7.1.2 The Home Directory . 7-2
7.1.3 Command Line Directory Shortcuts . 7-4
7.1.4 Directories and Executables . 7-4

7.2 Files . 7-5
7.2.1 Filenames . 7-5
7.2.2 Filename Expansion and Wildcard Characters 7-6

7.3 Manipulating Files . 7-7
7.3.1 List Directory Contents: ls . 7-8
7.3.2 List File Contents: cat, less, more, head, and tail 7-9
7.3.3 Copy a File: cp . 7-11
7.3.4 Move or Rename a File: mv . 7-12
7.3.5 Reference a file: ln . 7-12
7.3.6 Remove a File: rm . 7-14
7.3.7 Copy to/Restore from Archive or Tape: tar 7-14
7.3.8 Compress or Expand a File: gzip, gunzip 7-16

7.4 Information About Files . 7-16
7.4.1 Find a File: find . 7-17
7.4.2 Search for a Pattern: grep . 7-18
7.4.3 Count a File: wc . 7-19
7.4.4 Dump a File: od . 7-20
7.4.5 Determine File Type: file . 7-20

7.5 Manipulating Directories . 7-21
7.5.1 Print Working Directory: pwd . 7-21
7.5.2 List Directory Contents: ls . 7-21
7.5.3 Change Directory: cd . 7-21
7.5.4 Make a Directory: mkdir . 7-22
7.5.5 Copy a Directory . 7-22
7.5.6 Move (Rename) a Directory: mv or mvdir 7-23
7.5.7 Remove a Directory: rmdir . 7-23

7.6 File and Directory Permissions . 7-24
7.6.1 File Access Permissions . 7-24
7.6.2 Directory Permissions . 7-27

7.7 Temporary Directories . 7-28

Chapter 8: The AFS File System . 8-1
8.1 Introduction to AFS . 8-1
8.2 How to Determine if AFS is Installed on your System 8-2
8.3 Issues Related to Login and File Access . 8-2

8.3.1 Authentication in AFS . 8-2
8.3.2 Managing your Token . 8-4

TOC-4 UNIX at Fermilab

8.4 AFS File System Commands . 8-5
8.5 AFS Volumes and Quota . 8-5
8.6 File and Directory Permissions . 8-6

8.6.1 File Permissions . 8-6
8.6.2 Directory Permissions via Access Control Lists (ACLs) 8-6

8.7 AFS Protection Groups . 8-9
8.7.1 Permissions for Performing Group-Related Tasks 8-11
8.7.2 Listing Information about Groups . 8-12
8.7.3 Modifying Group Characteristics . 8-13

8.8 Implications of ACLs . 8-15
8.8.1 Protecting your Subdirectories . 8-16
8.8.2 AFS in Translator Mode . 8-18

8.9 File Locking in AFS . 8-18
8.10 Frequently Asked Questions . 8-19

8.10.1 Lost Access to Files . 8-19
8.10.2 AFS and the UNIX Command “find” . 8-19
8.10.3 Error Messages . 8-20
8.10.4 Retrieving Old Files . 8-20
8.10.5 Link Failure . 8-20

Chapter 9: Working Environment . 9-1
9.1 Special Keys . 9-1
9.2 Special Characters (Metacharacters) . 9-4

9.2.1 Slashes . 9-4
9.2.2 Quotes and Parentheses . 9-4

9.3 Terminal Characteristics . 9-5
9.4 Information Distribution System: NIS . 9-7
9.5 Shell Variables and Environment Variables . 9-8

9.5.1 C Shell Family . 9-8
9.5.2 Bourne Shell Family . 9-10

9.6 Some Important Variables . 9-11
9.7 The Alias Command . 9-13

9.7.1 C Shell Family . 9-13
9.7.2 Bourne Shell Family . 9-14

9.8 Tailoring Your Environment . 9-15
9.8.1 C Shell Family Fermi Files . 9-15
9.8.2 Bourne Shell Family Fermi Files . 9-17
9.8.3 Storing Customized Code . 9-18

9.9 Multimedia File Support . 9-19

Chapter 10: Editors . 10-1
10.1 The Available Editors . 10-1
10.2 Comparison of Editors . 10-2
10.3 Getting Started with the Editors . 10-2

10.3.1 vi . 10-3
10.3.2 emacs and xemacs . 10-4
10.3.3 NEdit . 10-12

UNIX at Fermilab TOC-5

Chapter 11: Printing . 11-1
11.1 The Fermilab Print Server FNPRT . 11-1
11.2 The Print Commands . 11-1

11.2.1 The flpr Command . 11-2
11.2.2 Setting the Environment Variables . 11-3

11.3 Printer Nicknames . 11-3
11.4 Pre-Printing Options . 11-4

11.4.1 Convert ASCII to PostScript: a2ps . 11-4
11.4.2 Print Multiple Pages per Sheet: psnup 11-5
11.4.3 Set Duplex Mode . 11-5

11.5 Other Print Utilities . 11-7

Chapter 12: Email on UNIX . 12-1
12.1 Getting Started . 12-1
12.2 IMAP-Supported UNIX Email Clients . 12-2

12.2.1 Pine . 12-2
12.2.2 Netscape Messenger . 12-2
12.2.3 Mozilla Mail & Newsgroups . 12-2
12.2.4 WebMail . 12-2

12.3 Configuring Pine . 12-2
12.3.1 Multiple Mail Formats . 12-3
12.3.2 Further Configuration . 12-4
12.3.3 Printing in Pine . 12-5

12.4 Non-IMAP Mail Forwarding . 12-5
12.4.1 Choose a Node and Create a .forward File 12-5
12.4.2 Why Choose a Particular Node? . 12-6
12.4.3 Set Forwarding on Other Nodes . 12-6
12.4.4 Set your “Reply To” Address . 12-6

Chapter 13: Batch Processing Environment . 13-1
13.1 The Standard Batch System at Fermilab: LSF 13-1

13.1.1 Job Queues . 13-2
13.1.2 Load Monitoring on Hosts . 13-2
13.1.3 Host Selection . 13-2
13.1.4 Job Priority . 13-2

13.2 Running Batch Jobs in LSF . 13-3
13.2.1 View Host Information . 13-3
13.2.2 View Queue Information . 13-4
13.2.3 Submit a Batch Job . 13-5
13.2.4 Monitor Submitted Batch Jobs . 13-5
13.2.5 Control Submitted Batch Jobs . 13-6

13.3 Related Software Components . 13-7

Chapter 14: Data and Tape Handling . 14-1
14.1 SAM (Sequential data Access via Meta-data) 14-1
14.2 Enstore . 14-1
14.3 OCS (Operator Communications Software) 14-2

14.3.1 OCS Basics . 14-3

TOC-6 UNIX at Fermilab

14.3.2 The OCS X Interfaces . 14-7
14.3.3 Using Provided Examples to Get Started 14-8

Chapter 15: Software Development . 15-1
15.1 Overview of Programming Languages and Tools 15-2
15.2 Introduction to C and FORTRAN on UNIX 15-5

15.2.1 The C Compiler: cc . 15-5
15.2.2 The FORTRAN Compiler: f77 . 15-5
15.2.3 C and FORTRAN Compiling Basics . 15-6
15.2.4 Linking Order . 15-7
15.2.5 Displaying Active Options . 15-7
15.2.6 Option Passing . 15-7

15.3 Introduction to C++ on UNIX . 15-7
15.4 C, C++ and FORTRAN Compiler Options . 15-8

15.4.1 Commonly-Used Options . 15-9
15.4.2 Recommended Options for General Use 15-10
15.4.3 Debugging Option . 15-11
15.4.4 ABI Options Under IRIX 6 . 15-11
15.4.5 Speed Optimization Options . 15-11
15.4.6 Load Map Option . 15-12
15.4.7 Special FORTRAN Compiler Options 15-12

15.5 FORTRAN Programming . 15-14
15.5.1 External Reference and Entry Point Names 15-14
15.5.2 Separate Compilation of FORTRAN Subprograms: fsplit . . . 15-14
15.5.3 Loading Block Data Modules . 15-14
15.5.4 Program Control . 15-15
15.5.5 Future FORTRAN Enhancements . 15-15

15.6 Obsolete Programming Features . 15-15
15.7 C and FORTRAN I/O . 15-16

15.7.1 Records . 15-17
15.7.2 Tapes . 15-17
15.7.3 Standard Input and Output . 15-17

15.8 Performance Tuning for C and FORTRAN 15-17
15.8.1 Optimization . 15-17
15.8.2 Word Length . 15-18
15.8.3 Feedback . 15-19
15.8.4 Inlining . 15-19

15.9 C and FORTRAN Mixed Programming . 15-19
15.9.1 Variable Types . 15-20
15.9.2 Array Indexing . 15-20
15.9.3 External Names . 15-21
15.9.4 Arguments . 15-21
15.9.5 Commons . 15-21
15.9.6 I/O . 15-22
15.9.7 Linking . 15-22

15.10 Executing a Program . 15-22
15.11 Debugging . 15-23

UNIX at Fermilab TOC-7

15.11.1 dbx . 15-23
15.11.2 gdb . 15-26
15.11.3 purify . 15-26

Chapter 16: The make Utility . 16-1
16.1 An Overview of the make Utility . 16-1
16.2 The Makefile and its Components . 16-2

16.2.1 Macros . 16-3
16.2.2 Targets . 16-5
16.2.3 Suffix Rules . 16-7
16.2.4 Suffix Declarations . 16-8
16.2.5 Control Files within a Makefile . 16-8

16.3 Running make . 16-9
16.3.1 General Usage . 16-9
16.3.2 Usage without Specifying Target . 16-9
16.3.3 Usage without a Makefile . 16-10

16.4 “Housekeeping” Targets . 16-10
16.5 Portability . 16-11
16.6 make’s Built-in Rules . 16-12
16.7 A Few Caveats... . 16-13

Chapter 17: Code Management using CVS . 17-1
17.1 About CVS . 17-1
17.2 Accessing CVS . 17-1
17.3 Basic CVS Commands . 17-2

Index . IDX-1

TOC-8 UNIX at Fermilab

Introduction to UNIX at Fermilab 1-1

Chapter 1: Introduction to UNIX at Fermilab

This chapter is intended to introduce you to the UNIX environment, the UNIX
file systems and the computing security in use at Fermilab.

1.1 Computer Security at Fermilab

1.1.1 Strong Authentication and Kerberos v5

In order to protect against unauthorized access to Fermilab computers, the
Computing Division has implemented the Kerberos Network Authentication
Service V5, developed at MIT, to provide what is known as strong
authentication over the network.

“Authentication” refers to verifying the identities of netw orked
users, clients and servers. “Strong” authentication is a m eans of
verifying these identities w ithout transm itting passwords over
the network, and without requiring that the network itself be
protected.

Kerberos v5 is the strong authentication program that Fermilab computers are
required to run. Kerberos authenticates users by way of exchanging electronic
tickets between clients and services. It cleverly encrypts and de-encrypts these
tickets before and after transmitting them. A machine on which Kerberos v5
has been installed and which enforces the Kerberos authentication is referred
to as a strengthened or Kerberized machine.

The “heart” of a Kerberos system is the Key Distribution Center (KDC), which
maintains a database of member computers and users, and grants
authentication requests. The set of member computers make up what’s called a
“strengthened realm”. At Fermilab, the strengthened realm for UNIX
machines is called FNAL.GOV.

All UNIX machines at Fermilab are required to be configured such that they
are members of the FNAL.GOV realm. Off-site machines used for
Fermilab-related work may also be configured as such.

1-2 Introduction to UNIX at Fermilab

Once you have authenticated to the FNAL.GOV realm on your desktop, you
can freely access over the network any computer in this realm on which you
have an account, without retyping your (FNAL.GOV) Kerberos password!

The Fermilab Strong Authentication implementation is described in the Strong
Authentication at Fermilab website and manual, online at
(http://www.fnal.gov/docs/strongauth/). Try out the “Getting
Started” link.

1.1.2 Fermilab Policy and Your Responsibilities

As a computer user at Fermilab, you are required to read the Fermilab Policy
on Computing; see
http://www.fnal.gov/cd/main/cpolicy.html.

The Kerberos authentication system exercises tight control over
who uses the lab’s com puters and netw ork, but as w ith any
security system , it requires those with legitim ate access to “lock
the doors behind them selves” and “keep the key in a safe place”.
In our com puting environm ent this translates into a set of
responsibilities for all Ferm ilab com puter users. These
responsibilities are listed in the Computing portion of the New Employee
Orientation under “Fermilab Policy on Computing” at
http://computing.fnal.gov/orientation/policy.html.
This page is also accessible via a link from the “Getting Started” portion of the
Strong Authentication manual,
http://www.fnal.gov/docs/strongauth/getstart.html.

1.1.3 Conditions of Use for Federal Computers

The DOE requires that Fermilab computers post a notice to users regarding the
conditions of use. The message typically prints to screen after a successful
login. Make sure you understand and accept the conditions of use before you
proceed.

1.2 A Few Words about UNIX

Because UNIX was originally designed by programmers to support their own
projects, one of its strongest points is that it provides an excellent software
development environment. UNIX has a large set of powerful utility programs
and tools that allow users to easily build systems and applications. It also has
several command interpreters, called shells that can be used as high-level
programming languages.

Introduction to UNIX at Fermilab 1-3

1.2.1 Variations of the UNIX OS

There are several flavors of the UNIX operating system, corresponding
roughly to individual vendors’ hardware platforms, e.g., SunOS from Sun
Microsystems, IRIX from SGI, and so on. The Linux flavor breaks the mold,
as it can be installed on a number of platforms. The flavors are in large part
quite similar, although various commands, files and other features may work
somewhat differently from one to another. In this manual, the commands
shown are valid for all supported flavors, except when noted otherwise.

1.2.2 UNIX OS Components

The UNIX operating system has four basic components:

• The kernel constitutes the nucleus of the operating system and
coordinates the internals such as allocating system resources.

• The file system, which is part of the kernel, controls the storage and
access of data.

• Commands are programs that the computer executes upon command.

• Programs called shells serve as command interpreters. They act as links
between user and computer, interpreting and executing commands. They
are also high-level interpretive programming languages. There are two
commonly-used families of shells: Bourne and Berkeley/C.

1.3 The Fermi UNIX Environment (FUE) and
Product Support

The Fermilab Computing Division (CD) supports several UNIX operating
system flavors; see the document Certified UNIX Operating Systems at
http://www.fnal.gov/docs/Recommendations/dr0010.html
for a current listing. Across this variety of UNIX flavors, the CD makes
available a dependable, easy-to-use and reasonably uniform computing
environment known as the Fermi UNIX Environment, or FUE for short. One
of the main goals of FUE is to provide as much as possible the same
environment on the different UNIX platforms that is dependable and easy to
use. The other primary goal is to provide a standard product support
methodology and toolkit, to which end the CD has developed the UNIX
Product Support and UNIX Product Distribution (UPS/UPD) suite of tools.
There are two levels of FUE: CoreFUE and FullFUE.

1-4 Introduction to UNIX at Fermilab

 The UPS/UPD tools are documented in the UPS, UPD and UPP v4 Complete
Guide and Reference Manual, found online at
http://www.fnal.gov/docs/products/ups/.

1.3.1 CoreFUE

The combination of the products UNIX Product Support (UPS) and UNIX
Product Distribution (UPD)1 is called CoreFUE. CoreFUE provides the
Fermilab UNIX software support environment, leaving the rest of the user
environment essentially untouched. It can be installed independently, without
the other portions of FUE. CoreFUE is well-suited to off-site systems that
interact with Fermilab computers and to which users download Fermilab
products.

1.3.2 FullFUE

For on-site systems, we recommend the installation of FullFUE, which
consists of CoreFUE plus the following products:

systools Local system administration utilities. Systools includes
a suite of smaller products. The features you get with
systools include: the FUE login scripts to standardize
your environment, the “cmd” command which is used
to allow particular users or groups to run commands
with superuser or other privilege, and the bash and tcsh
shells.

futil Fermilab-specific utilities including flpr (see section
11.2 The Print Commands, psutils, telephone, stock, and
gtools

To get information about any of these individual products, go to the Computing
Division home page (http://www.fnal.gov/cd/) or documentation
search page
(http://cddocs.fnal.gov/cfdocs/productsDB/docs.html),
and look them up.

1.3.3 The Login Files for FullFUE

If you’re running FullFUE, a series of scripts is run when you log in that define
the functionality of your terminal and set up your environment. These script
files are located in your home directory. You can peruse the default file listings
in /usr/local/etc/. The file names differ depending on the shell you

1. Perl is also part of CoreFUE, as it is a required component of UPS/UPD.

Introduction to UNIX at Fermilab 1-5

use; shells are described in Chapter 5: Shells. The shell runs (usually) two
files. Shells of the C shell family, csh and tcsh, run the two files .cshrc and
.login. There is more variety among the Bourne family shells:

sh runs .profile

ksh runs .profile and .bashrc

bash runs .profile and (sometimes) .kshrc in
place of .shrc

Sometimes (more common recently) vendors have linked sh to ksh, effectively
replacing sh with ksh.

If your account was created under FullFUE, these files are Fermilab-specific.
How can you tell? For C shell, look for the following text in your .login
(the path to setups.[c]sh depends on where UPS is installed):

if (-f "/afs/fnal.gov/ups/etc/setups.csh") then

 source "/afs/fnal.gov/ups/etc/setups.csh"

 if ({ ups exist login }) then

 setup login

 endif

endif

For Bourne shell, look for this in your .profile:
if [-f "/afs/fnal.gov/ups/etc/setups.sh"]

then

 . "/afs/fnal.gov/ups/etc/setups.sh"

 if ups exist login

 then

 setup login

 fi

fi

1.3.4 The Command Prompt

The default UNIX prompt usually indicates your default shell, where typically,
% indicates the C shell (csh) and $ indicates the Bourne shell (sh). However
the FullFUE login files set the machine prompt to the machine name, e.g.,
<fsui02>.

You can change your default prompt by altering your start-up files (note the
intentional space between the new prompt name and the closing angle
bracket):

• For C shell, include in your .login file:

 set prompt='<newprompt >'

• For Bourne shell, you need to set the value of the keyword shell variable
PS1. This is just a variable that is declared and initialized by the shell at
start-up. Include in your .profile file:

 export PS1; PS1="<newprompt >"

1-6 Introduction to UNIX at Fermilab

1.4 File Systems: Standard UNIX and AFS

1.4.1 Standard UNIX File System

The standard UNIX file system is a hierarchy of directories descending from
what is known as the root directory. UNIX allows parts of the directory
hierarchy to reside on separate storage devices or in separate disk partitions.
These separately stored parts are called file systems. They are accommodated
in the main hierarchy by means of mount points. A mount point is a directory
in a file system that corresponds to the root directory of some other file
system. A machine’s or cluster’s primary file system is the one starting at the
true root. The standard UNIX file system is described in Chapter 7: The
UNIX File System.

1.4.2 AFS File System

If the UNIX machine that you work on is part of an integrated system of UNIX
machines at Fermilab, for example a LAN (local area network), it is likely that
the AFS distributed file serving system has been installed on it.

AFS is a shared file system. “AFS space” is a UNIX directory/file area starting
at /afs that can be shared between computers. This is handy when large
numbers of people need to access files in an area. Fermilab has a “cell” in AFS
space, which is simply the area under the AFS root directory belonging to
Fermilab. Fermilab’s cell is /afs/fnal.gov/. Any directory under this
cell, e.g., /afs/fnal.gov/x/y/z/, has exactly the same contents when
viewed/manipulated on one computer as on another, provided both computers
implement AFS with the Fermilab cell. Users are required to authenticate to
AFS.

See Chapter 8: The AFS File System for a discussion of AFS. Section 8.2 How
to Determine if AFS is Installed on your System describes how to determine if
AFS is installed on your machine.

Principals, Accounts and Passwords 2-1

Chapter 2: Principals, Accounts and Passwords

Virtually all computers on-site are required to run Kerberos authentication.
You’ll need to get a Kerberos principal (a special userid which identifies you
to the Kerberos authentication system) plus an initial Kerberos password. On
any computer you plan to use, you still need to have an account created for
yourself, with an initial password. You’ll need to change your initial
passwords. In this chapter you’ll find out how to do these things.

2.1 Choose and Obtain a Kerberos Principal
and Password

2.1.1 Kerberos Principal

We recommend that you obtain a Kerberos principal and password before
creating or requesting any computer accounts.

See Strong Authentication at Fermilab section 4.1 Your Kerberos Principal
at
http://www.fnal.gov/docs/strongauth/html/princ_pw.ht
ml#33181). Request a principal using the online form Request Form for
Computing Username and Primary Accounts at
http://www.fnal.gov/cd/forms/acctreq_form.html. From
this form you can request other items you may need as well.

If you will require access from a nonKerberized machine or from any X
terminal, request a CRYPTOCard when you request your principal.
CRYPTOCards are discussed in section 3.5 Connecting from a NonKerberized
Machine to Kerberized Host and in Strong Authentication at Fermilab
section 5.5 Connecting from a NonKerberized Machine: Portal Mode.

2-2 Principals, Accounts and Passwords

2.1.2 Kerberos Password

Once your request for a principal has been approved, you must stop by
WH8NE (Yolanda Valadez’ office) to receive your initial Kerberos password.
If you are off-site, you can get it over the telephone (630-840-8118). You
cannot get it via email.

You are required to change the initial password within 30 days of its creation,
and roughly once a year thereafter. Refer to Strong Authentication at
Fermilab section 2.4.1 Your Kerberos Password for instructions.

In contrast to the principal (which ideally should match your login name on
each machine and your email address), we ask that your Kerberos password be
unique. That is, in order to avoid exposing your Kerberos password, it must be
different from the passwords you use for any other purpose. We ask also that
you treat your password as a sacred object; please refer to the guidelines listed
on the page
http://computing.fnal.gov/orientation/policy.html.

The Fermilab Computer Security Team has imposed some restrictions on
passwords in accordance with DOE guidelines. Passwords the system
considers “bad” will be rejected.

For information about passwords, see Strong Authentication at Fermilab
section 4.2 Your Kerberos Password
(http://www.fnal.gov/docs/strongauth/html/princ_pw.h
tml#46115).

2.2 Obtain a Computer Account

To request an FNALU account, use the Request Form for Computing
Username and Primary Accounts online at
http://www.fnal.gov/cd/forms/acctreq_form.html. For
accounts on other UNIX systems, consult the system administrators of those
systems.

We strongly recommend that you use your principal name as your login id
(account name) on all Fermilab computer systems. There are significant
conveniences if your principal and your account name are the same, as
discussed in Strong Authentication at Fermilab Appendix C. More about
Choosing a Principal Name.

 Maybe it’s more effective to say that there are significant disadvantages to
choosing a login id that does not match your principal!

Principals, Accounts and Passwords 2-3

A UNIX login id must consist of lower case characters only. Be sure to enter
them in the correct case, because UNIX is case-sensitive. Note that if you do
accidentally use upper case to log in, UNIX may assume you have an
upper-case-only terminal and you will have very limited capability. In this
case, either log out and log back in again, or enter the command:

% stty -lcase

When you get an account on a machine, you will also get an initial password.
Read the following section, then change the password using the instructions in
section 2.4 Changing Passwords.

2.3 Other Passwords

2.3.1 The Standard UNIX Password

There exist passwords other than your Kerberos password that can be enabled
for your account on UNIX systems: a local UNIX password, an AFS
password1, and an NIS password. Unlike the Kerberos password, these
passwords do not authenticate you to Kerberized services, and consequently
they disallow single sign-on access to other systems.

We may turn off the NIS passwords for each on-site system as it becomes
Kerberized; in any case they will no longer be useful or necessary.

If you log in with one of these passwords directly to the console of a computer,
you may run the Kerberos command kinit, provide your Kerberos
password as prompted, and obtain Kerberos credentials. Your credentials
allow you to access other Kerberized systems with no further authentication
required.

2.3.2 The Standard UNIX Password

You generally have a standard UNIX password on all UNIX computers,
whether or not they’re strengthened (if AFS is installed, you have an AFS
password either in addition to or instead of a UNIX password).

1. In previous editions of this document, an AFS password was frequently called a “Ker-
beros password”. This referred to Kerberos V4 which is integrated into AFS. In the cur-
rent edition of this document, “Kerberos password” always refers to Kerberos V5, the
product we use to implement strong authentication, and when discussing Kerberos V4 or
AFS, we specify “AFS”, e.g., “AFS password”.

2-4 Principals, Accounts and Passwords

A UNIX password can be used to log in at the console of a strengthened
machine, thus allowing you to log into it even if you cannot be authenticated
via Kerberos for one reason or another, or if there’s no Kerberized local login1.
No access to Kerberized services (e.g., Kerberized telnet, ssh) is granted until
you manually run the kinit command.

A UNIX password can be used to log in at the console of a machine running
AFS, but you will not be granted access to the file system or to Kerberized
services until you run the kinit command.

As long as the Fermilab Kerberos authentication system is up and running, you
should never need to use, change, or be concerned about your UNIX password.

2.3.3 The AFS Password

AFS, described in Chapter 8: The AFS File System is installed on many UNIX
systems at Fermilab. AFS may be installed on a given system such that you
have only an AFS password, and no standard UNIX password is defined (this
is the case on FNALU). You can find out if you have a standard UNIX
password by attempting to change it via the standard UNIX command
passwd. If the command does not succeed (assuming you provide the correct
old password as requested), then you do not have a standard UNIX password.

There are three common situations in which your AFS password is useful
and/or necessary:

1) When logging into strengthened UNIX systems running AFS, your AFS
password would be useful to log in to the console and get access to the
file system but not to Kerberized services.

2) To get/renew an AFS token on a remote system, you’d need to enter
your AFS password if your local system doesn’t run AFS (see section
8.3.1 Authentication in AFS). (When you authenticate to Kerberos on
your local machine, you don’t get an AFS token if AFS isn’t running, so
you have none to forward).

3) If you ever need to manipulate files and directories in AFS space from a
Windows machine, you can install the Windows AFS client on that
machine. The Windows AFS client allows you to map directories under
Fermilab’s AFS cell to your Windows machine so that these directories
appear as mounted drives, just as local or networked Windows resources
do. You can then move and copy files to and from AFS drives/folders
the same as you do between your other drives/folders. Authentication
using your AFS password is sufficient; you do not authenticate via
Kerberos to the FNAL.GOV realm in this case.

1. Kerberized local login for IRIX systems or GUI login is available via vendor-supplied
PAMs.

Principals, Accounts and Passwords 2-5

2.3.4 UNIX and AFS Password Recommendations

Choose your UNIX and/or AFS password(s) to be different from your
Kerberos password! Otherwise you risk exposing your Kerberos
password and compromising the security.

A standard UNIX password must be at least six characters long and should not
be your login name or any simple permutation of it. We recommend that you
limit your password to eight characters, especially if it is used as an AFS
password. It is advisable to mix letters and digits in your password.

2.4 Changing Passwords

2.4.1 Your Kerberos Password

Please read the information and instructions in the Strong Authentication at
Fermilab document, section 3.3 Changing your Kerberos Password and
section 3.3.1 UNIX/Linux/Cygwin.

If you’ve already read the information and you just need to remember the
command, here it is. Log in locally to your desktop or laptop and run:

% kpasswd [<principal-name>]

Make sure this runs /usr/krb5/bin/kpasswd.

If the password has expired, you’ll need to log in using your standard UNIX
password, then run kpasswd.

2.4.2 Your UNIX Password

A UNIX password is stored, and thus may be changed, in one of two ways,
depending on the configuration of your system:

• If your system uses the standard UNIX file system, and NIS is not
installed, your UNIX password is part of your local password file, and can
be changed via the passwd command. Your UNIX password is only
changed for the machine, or node, on which you execute this command.

2-6 Principals, Accounts and Passwords

• If NIS1 is running on your system, your UNIX password is stored in the
NIS password file2 which is shared by all machines on the NIS cluster,
and can be changed via the yppasswd command. In this case your
UNIX password is changed for all nodes of the NIS cluster.

For any password changes, you will be prompted for your old and new
passwords.

2.4.3 Your AFS Password

You can change your AFS password via the command kpasswd
(/usr/afsws/bin/kpasswd). (Note that kpasswd is used to change
the Kerberos password as well, as discussed in section 2.4.1 Your Kerberos
Password, and on strengthened systems its path should precede the AFS
kpasswd path in the $PATH variable.) You will be prompted for your old
and new passwords. This changes your AFS password for all the AFS nodes at
Fermilab.

1. NIS (Network Information System) is a distributed database used to manage a network
of computers.
2. The passwords in the NIS maps have been turned off .

Logging into UNIX Systems at Fermilab 3-1

Chapter 3: Logging into UNIX Systems at

Fermilab

This chapter is intended to show you how to log into a Kerberized UNIX
computer at Fermilab, at the console or over the network.

Much of the material in this chapter has been reproduced from the Strong
Authentication at Fermilab manual, Chapter 4: Accessing Kerberized
Machines (Fermilab-Supported Methods) and edited appropriately.

3.1 Overview

3.1.1 About Logging in and Authenticating to Kerberos

Logging into a UNIX machine and authenticating to Kerberos are separate
functions, but they are linked. Your Kerberized UNIX desktop machine is
configured either to use the Kerberized login program or a standard UNIX one.
In the former case, you log in and authenticate in one step. In the latter case,
you log in first, then authenticate manually by running a command called
kinit.

Connecting from your Kerberized desktop to remote Kerberized machines
requires that you authenticate locally, making sure to obtain forwardable
credentials (credentials are also called “tickets”), and that you forward these
credentials to the target machine as you log into it. This requires use of
Kerberized connection programs, e.g., Kerberized versions of telnet, ssh, ftp,
and so on. You should never authenticate directly on a remote host; this would
expose your Kerberos password on the network.

That said, here is an exception! If your desktop is unKerberized, you can’t
authenticate to Kerberos from it. Authenticating to Kerberos does not become
an issue until you need to connect over the network to a remote Kerberized
host. For this you will need a CRYPTOCard (described in section 3.5
Connecting from a NonKerberized Machine to Kerberized Host). When you
log onto a remote host using a CRYPTOCard, you authenticate directly on the
remote machine. But it happens safely; your Kerberos password does not pass
over the network.

3-2 Logging into UNIX Systems at Fermilab

Note that if you have an account and a standard UNIX (or AFS) password (in
the passwd file or NIS map) on a machine, but no Kerberos principal or
password, you can log in LOCALLY TO THE MACHINE ONLY. From any
terminal other than the console, the Kerberized machine responds in portal
mode (described in section 3.5 Connecting from a NonKerberized Machine to
Kerberized Host) and you are given no option to enter your UNIX password.

3.1.2 About Forwarding Kerberos Tickets

In order to forward your Kerberos credentials to a remote host, the credentials
must be forwardable. Whether your credentials are forwardable or not depends
upon the default settings configured on your system, and/or on the options you
use with the kinit command, if you run that manually. Here’s what you
need to know:

After you’ve authenticated, run the command

% klist -f

Look for the F flag in the output (third line, below):
Valid starting Expires Service principal

02/11/00 12:45:33 02/12/00 01:45:33 krbtgt/FNAL.GOV@FNAL.GOV

 Flags: FIA

If it’s there, your credentials are forwardable. If not, you’ll need to
reauthenticate using kinit with the -f option (make sure it’s lowercase
f!):

% kinit -f

Do not run kinit over the network to authenticate on a remote machine.
kinit requires entry of your Kerberos password, and it is against Fermilab
policy to send your Kerberos password over the network, even encrypted. As
of Kerberos v1_5, kinit is equipped with a warning that appears if the
userid issuing the command doesn’t own the console device. It is designed to
help users avoid typing their password inadvertently over the network.

Forwarding is described in the Strong Authentication at Fermilab manual
section 9.2.4 Forwarding Tickets.

Logging into UNIX Systems at Fermilab 3-3

3.2 Logging In at the Console of a Kerberized
UNIX Machine

3.2.1 Using Standard UNIX Login Program

If your desktop machine is running the standard UNIX login program, log in at
the console normally, by entering your login id and your standard UNIX
password. The standard login program does not accept your Kerberos
password.

Note that if your machine runs AFS, your UNIX and AFS passwords may be
the same.

To obtain your Kerberos credentials after you log in, run:

% kinit <-f> <principal_name>

The -f flag requests forwardable tickets; forwarding may be set “on” by
default for your system in which case the -f is unnecessary. (Run kinit
without -f, then run klist -f to see if the F flag is present.) Only
include your principal name if it is different from your login id on the machine
you’re using. Your credentials should get forwarded to other strengthened
machines normally, as you connect to them using Kerberized services.

3.2.2 Using Kerberos Login Program

You will authenticate to Kerberos when you log in to your desktop if:

• your machine is configured to use the kerberos login program,1

• your login id on the machine matches your Kerberos principal, and

• you enter your Kerberos password at the password prompt.

Just enter your login id and Kerberos password as prompted. You do not need
to run kinit after login, unless you want to supply options that would give
your credentials non-default settings.

An advantage to using the kerberos login program is that it checks the
configuration file in which you or your system administrator can set defaults
for Kerberized applications. For more information on this, see the Strong
Authentication at Fermilab document, Chapter 17: The Kerberos
Configuration File: krb5.conf.

1. Not applicable to IRIX systems, or to Linux and Solaris if using the GUI login box
unless you’re running vendor-supplied Kerberos login PAMs.

3-4 Logging into UNIX Systems at Fermilab

3.2.3 If you don’t have a principal yet...

Note that if you have an account and a standard UNIX password on a machine
(in the passwd file or NIS map) but no principal or Kerberos password, you
can still log in at the console. Just enter your login id and UNIX (or AFS)
password as prompted. (From any terminal other than the console, the
Kerberized machine looks for existing Kerberos credentials, and responds in
portal mode if none are found; you have no opportunity to enter your UNIX
password.) However, once logged in, you cannot make outbound connections
to Kerberized hosts from there since Kerberized services are unavailable to
you.

3.3 Connecting from One Kerberized
Machine to Another

Make sure you have forwardable credentials on your desktop machine (see
section 3.1.2 About Forwarding Kerberos Tickets), then run the Kerberized
version of the connection program you want to use (ssh, slogin, telnet, rsh,
rlogin, rcp, scp or ftp) to connect and forward your credentials to the target
machine.

If your machine is configured properly, the Kerberized versions of these
programs should be the default versions. If you’re not sure, run which
<program>, and check the output for the path shown below, e.g.,:

% which telnet

/usr/krb5/bin/telnet

This is the right path for all the connection programs. To run Kerberized telnet
in this case, just type:

% telnet <-f> <-l remote_login_id> host

Use the -f option if your Kerberized telnet does not forward credentials by
default. If your login ids are different on the “source” and “target” hosts, use
the -l option with your target host login id as the argument.

If the which output shows a different path than the one shown above, the
Kerberized version of the program is not the default. In this case, specify the
Kerberized program by using the full path, e.g.,:

% /usr/krb5/bin/telnet <-f> <-l remote_login_id> host

The Kerberized features of these programs are described in the Strong
Authentication at Fermilab manual’s Chapter 13: Network Programs
Available on Kerberized Machines.

Logging into UNIX Systems at Fermilab 3-5

Assuming your credentials get forwarded to the target machine, you should be
automatically recognized and authenticated there; you should not be prompted
for your Kerberos password.

A few notes:

• If the usernames on the machines differ, use the -l
<remote_login_id> option; e.g., ssh -l
<remote_login_id>.

• If ticket forwarding has been set “off” for your system, and you want to
connect to a Kerberized machine with ticket forwarding turned on, use the
appropriate option, e.g., -f or -F for telnet, rsh, and rlogin (-F
marks them reforwardable from the target machine to other machines,
whereas -f does not).

• If ticket forwarding has been set “on” for your system, and you want to
connect to a Kerberized machine with ticket forwarding turned off, use
the appropriate option (e.g., -N for telnet, rsh, rlogin, and rcp, or -k
for Kerberized ssh).

3.4 Connecting from Off-Site

For this topic we refer you to the Strong Authentication at Fermilab guide
Chapter 6: Logging In from Off-Site.

3.5 Connecting from a NonKerberized
Machine to Kerberized Host

3.5.1 About Portal Mode

If your local desktop com puter does not run Kerberos software
and is not configured for the FNAL.GOV realm , then you can’t
authenticate to FNAL.GOV locally on your com puter. You can
work on the desktop w ith no problem , but in order to connect
over the network to Kerberized UNIX hosts, you m ust
authenticate to FNAL.GOV first.

Kerberized m achines in the FNAL.GOV realm are configured to
require entry of a single-use password whenever they receive a
login request com ing from an unKerberized com puter over the
network. (The password gets transm itted over the network, and

3-6 Logging into UNIX Systems at Fermilab

it could get intercepted. That’s why it m ust becom e invalid after
one login.) The target computer is said to respond in portal mode in this
case. It is acting as a secure gateway into the strengthened realm.

How do you get a single-use password that Kerberos will
recognize and honor? The FNAL.GOV realm at Fermilab is setup to use
CRYPTOCards to provide these single-use passwords.

Once you’ve logged on successfully through the portal, the KDC “knows who
you are”, and the machine obtains your Kerberos credentials for you. You are
not required to provide your Kerberos password when making further network
connections to other machines in the FNAL.GOV realm. If you need to
reauthenticate (which you have to do on the remote host in this case!), run the
command new-portal-ticket. This provides a portal mode prompt,
and is safe to run over the network.

3.5.2 Log in via CRYPTOCard

The CRYPTOCard login code assumes that your login name on the Kerberized
machine matches your principal. If your names don’t match, you won’t be able
to log in using this method.

Logins to Kerberized machines via CRYPTOCard can be done from your
non-Kerberized machine using the standard, non-Kerberized telnet, FTP,
or (if ssh v1_2_27d or later is installed on target machine) non-Kerberized
ssh or slogin. The Kerberized versions of these programs are not
available on non-Kerberized machines.

rlogin, rsh and rcp are not available for portal mode. Regarding ssh,
you cannot use scp or ssh <host> <command> via CRYPTOCard;
only interactive ssh or slogin work.

The system will prompt you to provide a non-reusable password (also known
as a response to a challenge). The prompt looks like this:

Press ENTER and compare this challenge to the one on your
display: [12345678]

Enter the displayed response:

Do not enter your Kerberos password! Use your CRYPTOCard to generate a
response (a single-use password). This is described in Strong Authentication
at Fermilab Chapter 5: Using your CRYPTOCard.

3.6 Logging Out

Before logging out, we recommend that you destroy your Kerberos credentials
to avoid a security risk. To do this, enter:

Logging into UNIX Systems at Fermilab 3-7

% kdestroy

If you are on a system that runs AFS, this will destroy your AFS token, too.

The command for logging out that works universally is:

% exit

The C shell family also supports:

% logout

The control character eof, which is usually set to <CTRL-D>, is the “normal”
UNIX way of logging off. However, since this is easy to enter accidentally,
FullFUE (described in section 1.3 The Fermi UNIX Environment (FUE) and
Product Support) includes the command set ignoreeof in the login files
to disable it (ignoreeof is not supported in all Bourne family shells, and so
<CTRL-D> works in some of them).

If you have other processes running you will be informed that you have
stopped jobs. You can continue to enter exit or logout until all the
processes are terminated.

Some shells automatically look for a logout script in your home directory and
run it if found. (FUE does not provide this file.) You can create a logout script
that contains the above and/or other commands and use it in place of the
standard logout commands. For the C shell family, call the script .logout.
For bash, use .bash_logout. This isn’t available for sh and ksh.

3-8 Logging into UNIX Systems at Fermilab

Information Resources 4-1

Chapter 4: Information Resources

This chapter introduces you to the information resources available to UNIX
users. We include instructions for communicating with the Fermilab
Computing Division Helpdesk. Standard UNIX on-line help is available via
the man pages. We discuss the World Wide Web and newsgroups, which are
very rich sources of information on a virtually unlimited set of topics. A few
utilities that allow you to get information about vendor products and other
users are also covered.

4.1 The Fermilab Helpdesk

The Fermilab Computing Division Helpdesk is available to answer questions
related to the supported computer systems and software on site. We encourage
you to send all your computer-related questions directly to the Helpdesk for
tracking and logging purposes.

Keep in mind that the first priority of the Helpdesk is to maintain central
systems and networks, and to ensure that Fermilab-supported software is
available and usable. Therefore a request which impacts only one individual
may not receive immediate attention.

The Helpdesk is in service Monday through Friday, 9:00 a.m. to 5:00 p.m. You
are encouraged to use the Web interface or email for all communications.

Helpdesk Email Address

During business hours: helpdesk@fnal.gov

During off-hours: operator@fnal.gov

Helpdesk Web Page

You can request help and/or keep track of actions taken on your requests from
this page. Go to http://csdserver1.fnal.gov/HelpDesk/cd/.

4-2 Information Resources

Helpdesk Phone Number

630-840-2345

During off-hours, you can leave a phone message, or “escape” to Data Center
Services (Operations) for requests requiring immediate attention.

Helpdesk Location

Wilson Hall, 8th floor, northeast corner office.

4.2 UNIX On-Line Help

4.2.1 man Pages

On-line help for UNIX system commands and utilities is in the form of man
pages (man stands for manual) which consist of an on-line version of the
UNIX documentation set (often called the UNIX Programmer’s Reference
Manual). You access the man pages with the man command.

Note that the man pages differ in many instances between UNIX platforms.

The man Command

When you need help on a known command, use the general man command
format:

% man [<part>] <topic>

where <topic> is generally a UNIX command. man is really the on-line
manual which is divided into several parts. <part> is a digit between 0 and
9. If you know in advance which part contains the information you want, you
can speed the search by specifying it. More often than not you will just enter:

% man <topic>

The word print in man entries usually means display on the screen. Don’t be
confused by this. Several options are available with the man utility, described
under man man. The man command normally displays complete manual
pages that you select by name. One-line summaries can be selected by either
by keyword (-k option), or by the name of an associated file (-f). These
options are described in section 4.2.2 Finding the Right Command.

A typical initial man screen can be seen by issuing the command:

% man ls

where ls is the UNIX command to list files in a directory.

Information Resources 4-3

Man pages are typically formatted with the UNIX text processing utility nroff
(or groff). These utilities are covered in most UNIX texts. If you find that the
man page is unformatted, run setup groff, and then rerun the man
command.

Note that built-in shell commands are described under the topic
corresponding to their shell.1 (See section 6.1.1 Programs, Commands and
Processes for information on built-in commands.) For example, to get
information on the command alias for your current shell, you would enter
man <shell> (e.g., man bash) and search there for information on
alias using the /<pattern> function described below.

ls(1) User Commands
ls(1)

NAME

 ls - list contents of directory

SYNOPSIS

 ls [-abcCdfFgilLmnopqrRstux1] [names]

AVAILABILITY

 SUNWcsu

DESCRIPTION

 For each directory argument, ls lists the contents
of the

 directory; for each file argument, ls repeats its
name and

 any other information requested. The output is
sorted

 alphabetically by default. When no argument is
given, the

 current directory is listed. When several
arguments are

 given, the arguments are first sorted
appropriately, but

/tmp/mpa002Zf

1. Some platforms provide man pages for built-in commands, however in general you
may find it easier to look in a reference book!

4-4 Information Resources

There is an alternate, “quick and dirty” method to verify the format of a
command and get a listing of its options. It doesn’t work with all commands,
but is usually worth a try. Simply enter the command with an illegal option
(try / or ? or .). For example,

% ls -/

will produce the output:
ls: illegal option -- /

usage: ls -RadCLHxmnlogrtucpFbqisf [files]

The man Command for AFS Commands

For AFS commands, it works a little differently. AFS commands are discussed
in section 8.4 AFS File System Commands. The man page for an AFS
command is found by entering:

% man fs_<command>

Note the underscore (_) between fs and the rest of the AFS command; the
underscore is only used with the man command.

Manipulating man Pages

man displays the information using your $PAGER environment variable, which
under FUE is set to less (see section 6.4.4 Filters). Therefore, man pages are
normally piped to less. The command man less will give you more
information about manipulating man via the less filter. less gives you one
page at a time and lets you enter commands at the prompt to control what it
does after each page. For example, you page forward with the SPACEBAR and
page backward using b.

Once in the man environment, you can search for patterns by entering the
/<pattern> option at the command line. The first instance of the string
<pattern> will appear in the top line of the screen. To find additional
instances of the pattern in the text, simply enter a slash (/).

To exit from man enter q (for quit).

Printing man Pages

To print a man page, you can use the pipe feature (|) along with recommended
print formatting and printing commands. These features are covered in
Chapter 11: Printing. As a suggestion, pipe the output of the man command
to a2ps -m (to convert man pages to PostScript format) and then pipe that
output to the print command flpr:

% man <command> | a2ps -m | flpr [<options>]

This formats the output nicely in landscape, two pages to a sheet.

Information Resources 4-5

4.2.2 Finding the Right Command

If you don’t know exactly what command you need, try the -k option with a
keyword.

% man -k <keyword>

This displays the man page name, the section number in the UNIX
documentation, and a short description for each man page whose name line
contains <keyword>. For example to find a search utility, enter:

% man -k search

The system will output several records similar to the following:

Some UNIX systems have an additional utility, apropos, which can be used to
locate commands by keyword lookup:

% apropos <keyword>

apropos <keyword> is equivalent to:

% man -k <keyword>

The -f <filename> option for man prints the manual entry summaries
which might pertain to the given filename(s). Any leading pathname
components are stripped from the filename before the filename is matched
against the summaries. Here is an example using the -f option, followed by
the output:

% man -f /etc/passwd

passwd (1) - change login password and password
attributes

passwd (4) - password file

conflict(8) - search for alias/password conflicts
/usr/local/lib/mh/conflict [-m

glookbib(1) - search bibliographic databases glookbib [-v
] [-istring] [-tn

ident(1) - identify files ident [-q] [\&.\|.\|.] ident
searches for all occu

lkbib(1) - search bibliographic databases lkbib [-v] [
-ifields] [-pfilename

lsearch(l) - See if a list contains a particular element
lsearch ?mode? list pat

lsearch(n) - See if a list contains a particular element
lsearch ?mode? list pat

zgrep(1) - search possibly compressed files for a regular
expression zgrep [gre

..

..

4-6 Information Resources

The summaries are gotten from the whatis database. You can run whatis
command(s) to look up a given command and obtain the header line from the
manual section. You can then run man to get more information on the
command. If the line starts name(section)... you can do man section

name to get the documentation for it.

4.2.3 Vendor Product Documentation

Most vendor product documentation is now available on-line:

Flavor: Command:

Linux info (Or go to
http://www.redhat.com/docs/)

IRIX insight

Solaris (SunOS) answerbook (only usable on Sun workstations at
Fermilab)

4.3 The Internet

The Internet is a global network of networks that provides access to hundreds
of thousands of computers around the world. As the reach of the network has
grown, so has the number of services accessible. The main tools that allow the
user to navigate through the Internet are:

Web browsers to browse the World Wide Web (see section 4.3.1 The
World Wide Web)

Email to send electronic mail (see Chapter 12: Email on
UNIX)

telnet, ssh to log into remote hosts (see section 3.3 Connecting
from One Kerberized Machine to Another)

ftp to send/retrieve data files to/from remote hosts (again
see section 3.3 Connecting from One Kerberized
Machine to Another)

News to scan internet news groups (see section 4.3.3
Newsgroups)

There are two ways to reference an Internet host: an alphabetic name and a
series of numbers. The alphabetic sequence is called the host name (e.g.,
fsui02.fnal.gov) and the numeric one is called the IP address (e.g.,

Information Resources 4-7

131.225.18.178). At Fermilab all host names end with fnal.gov, where this
suffix is called the domain name. Since hosts may change their IP addresses, it
is a good practice to always use the host name.

An introduction to making the Internet work for you is The Whole Internet:
The Next Generation, published by O’Reilly & Associates.

4.3.1 The World Wide Web

Our primary way of delivering information to you is via the Web. There are a
number of reasons why the Web has become the defacto standard for
information delivery at Fermilab, within the HEP community, and in the
world:

• The Web is very strong at pulling together information from different
places, and of different formats and types (native HTML1, PostScript,
newsgroups, and so on), and making it appear as a seamless whole.

• It is relatively easy to make information available on the Web. See The
World Wide Web at Fermilab.

• Web browsers are available for every supported platform at Fermilab,
making it an excellent fit to the distributed environment in which we now
work.

Accessing the Web

Web browsers work best on workstations that support graphics, so assuming
you have a graphics terminal, try either Netscape or Mozilla. To invoke them,
enter:

% netscape [&]

or

% mozilla [&]

The ampersand (&) is discussed in section 6.4.2 Standard Input and Output
Redirection. In order to use an X application (which these products are), you
must have defined your $DISPLAY variable correctly. See section 9.6 Some
Important Variables.

If you don’t have a graphics terminal, then you can use the line-mode program,
lynx. To invoke it, enter:

% lynx

1. HTML stands for HyperText Markup Language, the standard language for documents
accessed on the Web.

4-8 Information Resources

This section is not intended to provide detailed instruction on the use of any
particular Web browser. Once you get any of them running (at least the
graphical ones) there is more information than you will ever want available
under HELP. Or go to http://www.google.com and search. In addition,
at
http://www.fnal.gov/docs/products/www/mailcap_mime.h
tml will find information on the files that control what filetypes the browser
recognizes. These files are called .mailcap and mime.types.

Web Basics

Web browsers find information based on URLs (Universal Resource Locators)
which are like addresses and which take you to a Web site, the top page of
which is often called a home page.

Each home page can have several layers or pages that it links to, thereby
creating a whole Web site. But the home page is generally the first place you
would look. It is like looking at the cover of a book and its table of contents at
the same time.

The native WWW addresses are of the form:

http://address/

or

http://address/something.extension

The first part is the protocol, http in this case. (A protocol is a set of
rules computers observe to exchange information. http stands for the
HyperText Transfer Protocol; think of it as the identifier of a Web page.)
Instead of http you might also see https, ftp, file, gopher,
mailto, and news.

Next you’ll see a colon and two forward slashes (except for mailto,
which has a different format).

Next comes the computer’s address in the format described in section
4.3. A computer address, or domain name, is used by computers in
routing data across the many networks that make up the Net.

Finally, you often see a directory path at that computer plus a file at the
end of the path. Web page files usually end in “html”, for HyperText
Markup Language, although you may also see extensions such as
“htm”, “shtm”, “shtml”, or “asp”. HTML is the simple scripting
language that tells browsers how to display the various elements of a
Web page such as links, body text, header text, inline graphics, and
external files.

Information Resources 4-9

Many HTML files contain links to other documents. Sometimes links are text;
sometimes they are images. If a link consists of text, it is underlined and may
be in color. You can tell your cursor is on a link when a URL appears at the
bottom of the screen. If a link consists of an image, you’ll see a URL when
you move your mouse pointer across it.

Several Web search engines can help you find information you are seeking,
and they vary in the number of URLs they contain in their database, how deep
they go into Web sites indexing information, what they index, and how
frequently they “crawl” or “walk” the Web in surveying sites. There’s a
valuable Swiss site at URL
http://cuiwww.unige.ch/meta-index.html that collects several
WWW search tools. A favorite one is http://www.google.com.

Subject directories make it increasingly easy to find information about broad
subjects. An excellent directory is one called Yahoo at URL
http://www.yahoo.com/, a well-constructed directory of hundreds of
thousands of Web pages.

Writing your Own Web Pages

If you want to start writing Web pages in HTML format, see the Web link on
the Computing Division home page. Look under Web Publishers at Fermilab
and Web Page Design. The Computing Division provides templates that we
ask you to use for official Fermilab web pages.

A note for Web page providers on AFS systems: Set the permissions for
system:anyuser to rl on directories containing files that you want to
make accessible via a Web browser. See section 8.6 File and Directory
Permissions for information on AFS directory permissions.

4.3.2 UNIX Help on the Web

The man pages can sometimes be cryptic, unwieldy, or both. As an alternative,
set a bookmark in your Web browser to UNIXhelp for Users at
http://www.geek-girl.com/Unixhelp/. Here you’ll find
easy-to-follow instructions on the use of many UNIX features, organized into
four categories: Tasks, Commands, Concepts, and Utilities.

Also look at The UNIX Reference Desk at
http://www.geek-girl.com/unix.html. The resources in this
document are divided into the following classes: General, Texinfo Pages,
Applications, Programming, IBM AIX Systems, HP-UX Systems, Unix for
PCs, Sun Systems, X Window System, Networking, Security, Humor.

4-10 Information Resources

4.3.3 Newsgroups

Usenet News (or NetNews) is a way of communicating “articles” among
people world-wide. In general, information in newsgroups is volatile
information, whereas information in Web pages is of longer term. We have a
server here at Fermilab which receives articles from elsewhere and posts the
articles originating here. Fermilab has its own newsgroups named
fnal.xxx. CERN’s groups are prefixed with cern and SLAC’s with
slac. General information and especially important information is posted in
fnal.announce. NALCAL, seminar announcements, and the like are
posted in fnal.announce.seminars. UNIX discussion articles are
posted in fnal.comp.unix. There are many more newsgroups, both
Fermilab groups and others, that you might find of interest.

In order to make a newsreader available on UNIX, enter (or put in your login
script):

% setup news

A number of readers will be made available to you. Line-mode browser
commands are nn, rn, and trn. X-based browser commands are xrn and
knews. News may also be read from most WWW browsers and some mail
readers. The readers keep track of the newsgroups that you are interested in
(“subscribed to”) as well as which articles in each newsgroup you have read;
all of the UNIX readers cooperatively maintain this information, so you can
use different readers at different times without losing this information.

4.4 The Info Utility

Info is a facility available to the system support people to communicate with
you about events regarding the Fermilab computing systems (shutdowns, for
example), or other systems-related information that is newly available. To get
a list of the Info messages, enter the command Info. To read an item, enter
the command with the nametag of the item found on the left side of the Info list:

% Info <nametag>

Note the capital I! If the item is more than one page, press the space bar to
continue. Press q to quit.

Information Resources 4-11

4.5 Other Users: WWW Directories, finger
and who

WWW Directories

From the Fermilab at Work page, directories are available to point you to
information about Fermilab personnel and the high energy physics community
at large. These directories typically contain general information such as email
addresses, phone numbers, and office locations. For locating Fermilab
employees, see the Fermilab Telephone Directory at
http://www-tele.fnal.gov/telephone/.

finger

finger is used to find out about other users. It searches for matching account
names and first or last names, if known. Depending on the vendor
implementation, it may display the name of the person associated with each
account, the login name, the home directory and login shell, the contents of the
file .plan in the person’s home directory, and possibly other information
such as waiting mail, and time of last login. If the person is logged in, it also
may display information about his or her current sessions.

Note that each vendor has a different implementation of finger. In addition,
for security reasons many sites disable the output of finger over the network.
It is therefore unwise to rely on the format, content, or even the availability of
finger as a tool for finding out about users or their accounts.

The format of the finger command is:

% finger [<options>] [<name>...]

where <name> can be a part of a personal name or a username. If you
specify the option -m, then <name> is matched only to account name and
not the rest of the personal name.

We encourage you to create a .plan file. It is just a text file in which you
might include information such as your office location, phone numbers, mail
station, home address, schedule, emergency numbers, and so on.

finger can often be used to look up users on a remote machine by specifying
the name in the standard internet form user@host. This form works on VMS
machines with MultiNet running, but in this case <name> must be the
username; otherwise not much useful information is obtained.

4-12 Information Resources

who

The command who lists certain information about the users on your system.

% who

If used with the -q option, only the names of the logged in users and the
number of users are displayed.

The who am i form identifies the invoking user. The command format is:

% who am i

There are a number of options which you can read about in the man pages.

Shells 5-1

Chapter 5: Shells

This chapter discusses the concept of a UNIX shell, and how to manipulate
shells. It includes information on the available and recommended shells and
their features. The concept of a shell as an interpretive programming language
is introduced.

5.1 Introduction to Shells

The kernel is the real operating system and is loaded into memory at boot time.
Typically the user doesn’t interact directly with the kernel. The utilities are
programs stored on disk, and loaded into memory by the kernel when invoked.

A shell is a utility. It is run in user mode, and does not have system privileges.
You have a default shell, and you can invoke other shells. Invoking shells is
discussed in section 5.1.2 Starting a Shell.

The shell is the interface between the operating system and the user. It
interprets the commands you type and the keys you press in order to direct the
operating system to take an action. Shell scripts allow you to use the shell as
an interpretive programming language. They are introduced in section 5.4
Shell Scripts, but a comprehensive treatment of scripts is beyond the scope of
this manual.

There are two families of shells: one based on the Bourne shell (this family
also includes the Korn (ksh) and Bourne-again (bash) shells), and the other
based on the Berkeley/C shell. The shells themselves will be discussed and
compared in section 5.2 Features of Available Shells.

5.1.1 Determining Your Current Shell

There are several commands available in all the shells that can tell you your
current shell. We present four examples below with sample output for csh. The
first three, echo, env and finger, will show only your login shell. If
you have invoked another shell, these commands will not reflect the new shell.
ps lists information about all your active processes.

% echo $SHELL

5-2 Shells

displays the value of the variable name that follows the $; sample output:
/bin/csh

% env or printenv

shows all defined environment variables, including SHELL; sample output:
SHELL=/bin/csh

% finger <your_username>

shows user information and login shell; sample output:
 Login name: username In real
life: {your name}

 Directory: /afs/fnal.gov/files/home/room3/{username}
Shell: /bin/csh

Finally,

% ps

shows processes, including shell; sample output:
 PID TTY TIME COMD

 6264 pts/11 0:03 csh

Note that on some of the more recent OS releases /bin/sh is a link (links
are described in section 7.3.5 Reference a file: ln) to the korn shell (ksh). ksh is
a superset of sh, so this shouldn’t present any problems for you. One difference
is that your .shrc file (see section 9.8 Tailoring Your Environment) gets
sourced when you run /bin/sh scripts.

5.1.2 Starting a Shell

A shell is started by a login process. A new shell is also started for each
invocation of a terminal window or shell script (see section 5.4 Shell Scripts).
Which shell gets invoked is determined by the last field in your entry in the
password entry file. In a standard UNIX file system you can display your
password entry by the command:

% grep ^<username> /etc/passwd

(grep is described in section 7.4.2 Search for a Pattern: grep.; the use of ^
is explained in section 6.4.5 Regular Expressions.) To display your password
entry in an NIS environment, use the command:

% ypmatch <username> passwd

(The NIS command ypmatch is not described in this manual.) The
password itself isn’t useful, but it displays other information, e.g., your home
directory and numeric user-id. Sample ypmatch output from the FNALU
system, for which the default shell has been set to csh, looks like:

aheavey:!:6302:1525:Name of User:

/afs/fnal.gov/files/home/room3/aheavey:/bin/csh

Shells 5-3

When you log in, the login process invokes a shell program (e.g.,
/usr/local/bin/tcsh or /usr/local/bin/bash) and transfers
control to it. The shell displays a prompt indicating it is ready for your input.
The default UNIX prompts are symbols that indicate which shell is invoked
(recall from section 1.3.4 The Command Prompt that your prompt is likely to
be set differently):

• % for the C shell family

• $ for the Bourne or Korn shells

On FNALU the prompts are set to indicate the host machine, for example
<fsui01>, or <fsgi02>. At any point in your session you can invoke
another copy of the same shell or a different shell by typing the shell name at
the prompt, for example:

% csh

invokes csh (C shell). This new shell, or “subshell”, sits on top of your current
shell. The execution of the original shell is then suspended (the shell is put to
sleep), and the new shell takes control. Upon quitting the new one, the original
shell wakes up and resumes control.

The average user at Fermilab does not have the privilege to change the
password entry file. Therefore, to change your default shell you will need to
ask your system manager.

5.1.3 Exiting a Shell

To exit a shell and return to the calling shell, type exit at the prompt.
Repeat the exit command once for each subshell; when you reach your
initial shell, your terminal emulation is closed, and the terminal window
disappears. Instead of exit you may need to enter <CTRL-D>.

5.2 Features of Available Shells

This section is excerpted from Shell Choice, A shell comparison (dated
September 28, 1994) by Arnaud Taddei of CERN. His eleven-page document
contains a brief description of the six major shells and provides an excellent
comparison of features between the shells. It is available on the Web at
http://consult.cern.ch/writeup/shellchoice.

Of the six major shells, four are in the Bourne family: sh, ksh, bash, and zsh; and
two are in the Berkeley/C family: csh, tsch.

5-4 Shells

The most up-to-date shells are tcsh (Berkeley/C), and bash and zsh (Bourne).
These are also the three shells that are public domain (as opposed to
vendor-supported). The public domain shells are the same on all platforms,
which is not true of vendor shells. This is desirable when attempting to
homogenize user environments. Note that zsh is not supported at Fermilab.

Some of the common features of these newer shells are:

• specific startup files

• startup files are the same for any platform

• specific shell variables

• specific built-in commands

The tcsh is essentially an enhanced csh. Some additional features of the tcsh
are:

• enhanced completion1 mechanism (programmable for commands, file
names, variable names, user names, etc.)

• multiline editing capabilities (command line editing using emacs or
vi-style key bindings)

• enhanced file expression syntax

• spelling correction (see section 6.3 Command Recall)

• enhanced prompt

• step up/down through history list

The following table should give you an idea of the virtues of each of the shells
supported at Fermilab. It is adapted from one in Taddei’s document referenced
above. More complete feature lists for all the shells can be found there.

++ good

+ existing

- weak

-- absent

1. This feature allows you to uniquely specify a file without typing in its whole name.

Criteria sh ksh bash csh tcsh

Configurability - + ++ + ++

Execution of
commands

+ + + + ++

Completion -- + ++ + ++

Line editing - + ++ - ++

Shells 5-5

5.3 Supported/Recommended Shells at Fermi-
lab

On many systems at Fermilab, tcsh is used as the default shell. The Computing
Division currently supports csh, tcsh, sh, bash and ksh. tcsh or bash is
recommended for interactive use, and sh for scripts. (The C shell family is not
recommended for scripts due to inconsistent syntax at different levels of
nesting.) zsh is not currently supported. The supported shells are listed on
http://www-oss.fnal.gov/uas/.

5.4 Shell Scripts

As mentioned above, a UNIX shell can be used as an interpretive programming
language. Besides executing shell commands within the script, you can:

• create and use variables

• process (read) arguments

• test, branch, and loop

• perform I/O

Name substitution + + ++ + ++

History -- + ++ + ++

Redirections and
pipes

+ + + + +

Spelling correction -- -- -- -- +

Prompt settings + + + + ++

Job control -- + + + +

Execution control + + + + +

Signal handling + + + - -

Criteria sh ksh bash csh tcsh

5-6 Shells

A shell script is a file containing a sequence of commands which can be
executed by the shell, and flow control commands. The same syntax is used
for commands within scripts as for interactive command entry. Section 5.1.2
Starting a Shell explains briefly how the system runs and interprets shell
scripts.

Although you can write complex programs using the shell language, you can
also create simple shell scripts for running long commands or a series of
commands that you use frequently.

In every shell script you write, include the special characters #! followed by
the pathname of the shell as the first characters in the file. This indicates (a)
that this is a script rather than a compiled executable, and (b) which shell to
invoke to run the script.1

For example:

#!/usr/local/bin/bash

at the start of the script invokes bash to run it. A # found anywhere else in the
script is interpreted as the beginning of a comment, and the shell ignores all
characters between the # symbol and the next newline character.

An introductory reference for script-writing with examples can be found under
UNIXhelp for Users at http://www.geek-girl.com/Unixhelp/.

Note that in order to execute the script, regardless of shell, the script file must
have execute permission for the appropriate users (see section 7.6.1 File
Access Permissions for a discussion of permissions). After you set this
permission, the shell will need to rebuild its “hash table” to include the new
script. The hash table is a table of executables that the shell recognizes.

To complete these two operations, enter:

% chmod a+x <filename>

% rehash2

To run a script, the shell must be able to locate it. If its directory is in your path
(see section 9.6 Some Important Variables), you only need to type the script’s
filename to run it. If not, you can type the the filename preceded by ./ on
the command line (the ./ explicitly tells the shell to look for the executable
file in the current working directory). Typing the full path of the filename will
work too, although it is perhaps the most cumbersome way of telling the shell
where the script is. Here we illustrate the three ways to invoke a script:

% scriptname

% ./scriptname

1. On some of the more recent OS releases /bin/sh is a link to the korn shell (ksh).
Therefore on these platforms, the .shrc file gets sourced for any script starting with
#!/bin/sh.
2. The command in sh is hash; not necessary in other shells.

Shells 5-7

% /full_path/.../scriptname

Once the shell locates the script, it interprets and executes the commands in the
file one by one.

You may want to maintain a $HOME/bin directory for all your programs
and shell scripts, and include this directory in your path1. The shell uses this
variable to locate commands and other executables.

It is important to remember that, like all UNIX commands that are not part of
the shell (see section 6.1.1 Programs, Commands and Processes for an
explanation of shell commands), the script file executes in a subshell forked2
by the parent shell. This subshell retains any environment variables defined in
the script as well as any shell variables defined in the file .cshrc or .shrc
(one of these two files may be executed automatically prior to the script,
depending on your shell). At the end of the script, control returns to the parent
shell, and any definitions made by the subprocess are not passed back to the
parent process.

To execute a script for which you do want to pass back changes to the parent
shell (for example, setting new shell variables), the syntax for execution
differs. For the C shell family, execute the script by typing:

% source <scriptname>

For the Bourne shell family, type:

$. <scriptname>

The source or . command executes the script in the context of your
current process, so that you can affect this current process, in contrast to
normal command execution.

For instance, after you make changes to your .cshrc or .login file, you
can use source or . to execute it from within the login shell in order to
put the changes into effect.

5.5 Other Interpretive Programming Lan-
guages

We have mentioned that each UNIX shell can be used as the interpreter for its
own programming language. Other interpretive languages supported at
Fermilab are perl (provided in the FUE shells product), and gawk (a version of
awk). These languages are beyond the scope of this manual. The O’Reilly &
Associates, Inc. publishers provide excellent reference texts on them.

1. Under FullFUE, the Fermi files add your /bin directory to your PATH.
2. Under UNIX, the term fork means create a new process.

5-8 Shells

Important UNIX Concepts 6-1

Chapter 6: Important UNIX Concepts

This chapter introduces you to the UNIX command structure, and to many
important commands and concepts. The features introduced in this chapter
constitute the core of the UNIX operating system, and many of these tools are
quite powerful and flexible. Some of the features are shell-specific, and we
provide the distinctions where necessary.

6.1 Processing Environment

6.1.1 Programs, Commands and Processes

A program is an executable file. A program is invoked by entering its
filename (which is the command associated with the executable), often
followed by options, arguments, and/or parameters on the command line. The
shell allows three types of commands:

• an executable file that contains object code produced by a compilation of
source code

• an executable file that contains a sequence of shell command lines (a shell
script)

• an internal shell command (built-in command)

The first two command types may include standard UNIX utilities, commercial
products, and user-written programs. All the shells allow both interactive
command entry in which the commands are typed at the keyboard and
executed one by one, and scripted entry in which commands are put in a file,
called a shell script, and executed sequentially when the script is run. See
section 5.4 Shell Scripts for a brief discussion of the uses of shell scripts and
how to execute them.

Shells execute commands by means of processes. A process is an instance of
a program in execution. A process can interact with the kernel by invoking a
well defined set of system calls. The system calls instruct the kernel to perform
particular operations for the calling program and they can exchange data
between the kernel and the process. For example, a process can use system
calls to create new processes and terminate running processes.

6-2 Important UNIX Concepts

When a terminal session begins, the operating system starts a single parent
process. Creating a new process from an existing process is called forking.
This new process is called a child process or subprocess. Each process has a
unique process identification number (PID). A subprocess can fork another
process and become a parent. A process which is not receiving input from the
terminal, either running or stopped, is said to be in the background (see section
6.5 Job Control). The ps command can be used to print the status of active
processes. See the man pages for information about its options.

When you give the shell a command associated with a compiled executable or
shell script, the shell creates, or forks, a new process called a subshell. The
new process runs the system call exec which invokes yet another program to
execute the command in place of the current process (the subshell). Unless the
subprocess runs in the background, the parent process remains dormant until
its subprocess completes or is stopped. Then control returns to the parent.

To execute most built-in commands, the shell forks a subshell which executes
the command directly (no exec system call). For the built-in commands cd,
set, alias and source, the current shell executes the command; no
subshell is forked. You can, however, cause the shell to fork a process by
enclosing the command in parentheses. The following example illustrates this
(use of the semicolon is described in section 9.2 Special Characters
(Metacharacters); and the commands cd (change directory) and pwd (print
working directory) are described in section 7.5 Manipulating Directories):

% cd /dir1; pwd displays /dir1 (no subshell is forked)

% (cd /dir2; pwd) due to the parentheses, a subshell is forked, then
the commands are issued; displays /dir2.
Control then returns to the parent process.

% pwd displays /dir1 since the current process was
unaffected by the previous command line.

Most built-in commands exist in all shells, but there may be differences
regarding arguments, options, or output format between the shell-specific
versions of each command. Some commands for a given shell are not
available on all platforms. Refer to a UNIX text for lists of built-in commands.

You do not need to distinguish between built-in and other commands to
execute them. However in order to find help in the man pages, you do need to
know which is which. Help on shell commands is usually found under the
shell name, for example under man tcsh or man bash. Some platforms
provide man pages for built-in commands, however in general you may find it
easier to look in a reference book! Help on other commands is found directly
under man <command>.

Important UNIX Concepts 6-3

6.1.2 Command Interpretation by the Shell

When the shell receives a command, it interprets it in a series of three (for
Bourne shell family) or four (for C shell family) passes. Naturally, if the
command is an alias (see section 9.7 The Alias Command), it requires an
additional pass up front for substitution.

• The first pass for the C shell family looks for the ! character, and
replaces it with the previous command (see section 6.3 Command Recall
for information on command recall).

• The next pass (the first pass for the Bourne shell family) replaces
wildcards (used in filename expansion, redirection, and regular
expressions; see sections 7.2.2 Filename Expansion and Wildcard
Characters, 6.4.2 Standard Input and Output Redirection, and 6.4.5
Regular Expressions, respectively).

• The next pass looks for the $ character in order to replace variable
names with their values (see section 9.5 Shell Variables and Environment
Variables).

• The final pass splits the command line elements by whitespace to arrive at
the final, literal command that the shell must execute.

There are ways to prevent interpretation of special characters in each of these
passes. Preceding a character with a backslash (\) works for all special
characters; wildcards can be enclosed in single or double quotes; variables can
be enclosed in single quotes; and whitespace is ignored if the argument
containing the whitespace is enclosed in single or double quotes.

To illustrate the operations that take place in each pass, the following table
presents a series of three examples using the echo command and the same
string, first in single quotes, then double quotes, and finally with no quotes.
The echo command writes the string to standard output. Assume that the
files that match q* are qq and qqq, and the value of the variable a is foo.

Command --> echo 'q*
$a x'

echo "q*
$a x"

echo q* $a
x

After first
passa, only
wildcards are
interpreted.

echo 'q*
$a x'

(no wildcard expan-
sion due to quotes)

echo "q*
$a x"

(no wildcard expan-
sion due to quotes)

echo qq
qqq $a x

(unquoted wildcard is
expanded)

6-4 Important UNIX Concepts

6.2 Command Entry

A UNIX command is either a built-in command or the name of an executable
file which the operating system will load and execute. When you see the
prompt, you can enter a command by typing the command name, any options
and arguments, followed by a carriage return.

Recall, the formats displayed in this manual use this font style to
indicate characters to be typed as is, and angle brackets <...> to indicate
arguments to be substituted. Arguments enclosed in square brackets, [...], are
optional.

After second
pass,
unquoted or
double
quoted
variables are
replaced by
their values.

echo 'q*
$a x'

(no variable replace-
ment due to quotes)

echo "q*
foo x"

(double-quoted vari-
able $a replaced
by value)

echo qq
qqq foo x

(unquoted variable
$a replaced by value)

After final
pass,
command
string is
broken up
according to
whitespace.
The separate
elements are
listed
vertically.

echo

'q* $a x'

(string treated as one
argument due to
quotes)

echo

q* foo x

(string treated as one
aregument due to
double quotes)

echo

qq

qqq

foo

x

(no quotes; each argu-
ment treated sepa-
rately)

When you
type in the
original
command,
the system
returns the
string:

q* $a x q* foo x qq qqq foo
x

a. This would be the second pass for C shell family; there were no ! characters to
replace.

Important UNIX Concepts 6-5

You should be aware that UNIX commands are not noted for their consistency
of format. Furthermore, commands, formats, arguments, and options may vary
slightly from one UNIX flavor to another. In this manual, we attempt to be as
generic as possible, and describe options that are widely available.

UNIX commands are described on-line in the man pages (see section 4.2 UNIX
On-Line Help).

6.2.1 Command Format

The basic format of UNIX commands is:

% command -option(s) argument(s)

where:

% is the (default, non-FUE) csh prompt.1

command is the UNIX command name of a utility or tool.

option(s) modifies how the command runs; options are nearly
always preceded by a dash and listed one after another.
See example below.

argument(s) specifies data or entities (usually files) on which the
command is to operate; arguments are separated by
blanks (“white space”).

Remember, UNIX is case-sensitive. Therefore UNIX commands must be
entered in the correct case. Most of the time commands are entered in lower
case.

The components are separated by at least one blank space. If an argument
contains a blank, enclose the argument in double quote marks. Normally,
options can be grouped; e.g., the -lw and the -l -w option specifications
are equivalent in the examples below (wc is a sample command; it lists line,
word, and/or character count of one or more files.):

% wc -lw <file1> <file2>

% wc -l -w <file1> <file2>

Some options can have arguments, and there isn’t consistency on whether there
should be a blank space between the option and its argument. Check the man
pages when you’re not sure. In the next example which shows the FORTRAN
f77 command, outputfile is the argument of the option -o:

% f77 -o <outputfile> <program.f>

Looping and conditional commands are also supported. These are more
advanced shell commands and are not covered in this manual. Consult a UNIX
text for information on these.

1. $ is the non-FUE default for Bourne shell.

6-6 Important UNIX Concepts

6.2.2 Miscellaneous Command Line Features

• To correct typos you can use the erase key (DELETE or BACKSPACE) to
erase character-by-character, or the KILL key to kill an entire line (see
section 9.2 Special Characters (Metacharacters)).

• More than one command can be entered on a line if the commands are
separated by semicolons. The commands will be executed sequentially.
See section 9.2 Special Characters (Metacharacters) for more
information on using multiple commands on one line.

• If you need to continue a command to a new line, you can either keep on
typing (without doing a carriage return), or enter a backslash (\) followed
directly by a carriage return (no space in-between) and then continue
typing on the next line. (Recall the backslash is used to prevent a special
character’s meaning to be interpreted by the shell. See section 6.2
Command Entry.)

• You can use parentheses to group commands. Since a subshell is created
for each group, this can be used to prevent changing the current
environment. It can also be used to redirect all output from the commands
considered as a group (see section 6.4.2 Standard Input and Output
Redirection).

• Type ahead works, even if the characters get interspersed with output.

6.3 Command Recall

Command recall is quite different in each shell. One common feature for all
shells that support command recall is the history mechanism. It maintains a
list of commands that have been entered and allows them to be reexecuted.
The history variable, set to some number at login time in the start-up files,
determines the number of commands that are saved in the list. The savehist
variable specifies how many commands are to be saved for your next session
after you log out. The history command displays the list of saved
commands:

% history

We discuss the following shells separately: csh, tcsh, and bash/ksh. There is no
command recall facility for sh.

csh

There is no command line editing native to csh. Before describing the standard
csh command recall facility, we should mention a Fermilab product called cedit
that we recommend for use with csh instead. It was designed to mimic VMS

Important UNIX Concepts 6-7

line editing, and turns out to provide similar command recall and editing
functionality to tcsh. To use cedit under FUE, you need to set it up initially.
Enter:

% setup cedit

To execute it, type:

% m

followed by <RETURN>. m stands for modify. Use the up or down arrow keys
to scroll to the desired command. The right and left arrow keys and your
backspace key allow you to edit the command before reexecuting it. There are
several control characters that perform functions within cedit. Typing
<CTRL-I> in cedit displays the available commands.

Recalling history commands using standard csh syntax is fairly easy. Use the
commands listed below.

For example, to reexecute the 4th command from the history list, enter:

% !4

and to reexecute the last command starting with ls:

% !ls

The dollar sign ($) can be used to recall the last word of a command. !$
causes substitution of the last word of the last command. For example, you can
check the contents of myfile.f and then compile it using the following
command sequence:

% less myfile.f

% f77 !$

A couple of nice features you can use with these reexecution commands are
preview (p) and substitute (s). To substitute a string in the previous command
and preview it before execution, use the syntax:

% !:p:s/<oldstring>/<newstring>

To do the same for the nth command in the history list, use:

% !<n>:p:s/<oldstring>/<newstring>

To execute after previewing (and/or substituting), simply type:

!! Reexecute the previous command

!<n> Reexecute command <n> from the history list

!<text> Reexecute the most recent command beginning with <text>

!?<text>? Reexecute the most recent command containing <text>

6-8 Important UNIX Concepts

% !!

tcsh

Recalling commands is easy if you are using tcsh. The up/down arrows on the
keyboard can be used to recall commands and the left/right arrows can be used
to move around within the command to edit it.

A command line correction algorithm is available in tcsh. To enable it, enter:

% set correct=all

This causes all words on the command line to be checked. If any part gets
corrected, the system notifies you, and gives you a chance to accept or reject it.
For example, say you type in:

% lz /usr/bin

The system will return with:
CORRECT ls /usr/bin (y|n|e|a|)?

Where y=yes, n=no, e=edit, and a=abort. You must provide one of these
responses.

To turn off command line correction, enter:

% set correct=none

ksh

Two styles of command recall are supported; emacs and vi. The style is
determined in one of two ways:

• include the line set -o <editor> in either your .profile or
.shrc file, where editor is either emacs or vi (this takes precedence
if variables below are set differently)

• set either the EDITOR or VISUAL environment variable to one of these
editors

When set to emacs, use the usual emacs commands to display and modify
previous commands, for instance <CTRL-P> for previous line. When set to vi,
command recall is initiated by typing the ESCAPE (or <CTRL-[>) key. Then all
the standard vi commands can be used. Some of the basic vi and emacs
commands are listed in section 10.3 Getting Started with the Editors.

bash

Both csh and ksh-style recall are supported.

Important UNIX Concepts 6-9

6.4 Important Concepts

This section attempts to provide an overview of a few of the important
concepts in UNIX which are very different from other systems and may
therefore be confusing to the novice user. In order to be able to make effective
use of UNIX, these concepts need to be understood.

6.4.1 Path

When you issue a command, the shell program parses the command line and
either processes it directly or searches for an executable file with that name in
any of the directories specified in your search path, which is controlled by the
variable PATH. See section 9.6 Some Important Variables for information on
the PATH variable. If the file is not found in any of the directories in your
search path, the shell reports that the command was not found. The file may
well be on the disk somewhere, but it is not in your path.

FullFUE (see section 1.3 The Fermi UNIX Environment (FUE) and Product
Support) attempts to provide an appropriate path, and we recommend that you
not change this basic path. However, feel free to add directories to it. For the
csh family, your .login file contains a set path line for the shell
variable path.1 Uncomment this line (remove the #) and include additional
directories in the shown format:

set path=($path /dir1 /dir2...)

Or change the environment variable PATH (also in .login), as follows:

setenv PATH "${PATH}:/dir1:/dir2"

For the sh family, uncomment and add directories to the PATH line in your
.profile file:

PATH=$PATH:/dir1:/dir2...

As an aside, if you add an executable to one of the directories in your search
path, it may be necessary for you to either log out and log back in, or to
recreate the internal tables used by the shell with the rehash (csh) or hash
(sh) command (see section 5.4 Shell Scripts).

1. Shell versus environment variables are discussed in section 9.5 Shell Variables and
Environment Variables.

6-10 Important UNIX Concepts

6.4.2 Standard Input and Output Redirection

The shell and many UNIX commands take their input from standard input
(stdin), write output to standard output (stdout), and write error output to
standard error (stderr). By default, standard input is connected to the
terminal keyboard and standard output and error to the terminal screen.

The way of indicating an end-of-file on the default standard input, a terminal,
is usually <CTRL-D>.

Redirection of I/O, for example to a file, is accomplished by specifying the
destination on the command line using a redirection metacharacter followed
by the desired destination.

C Shell Family

 Some of the forms of redirection for the C shell family are:

The form of a command with standard input and output redirection is as shown
below. We split it into several lines here in order to show clearly the use of the
< and > symbols, so as not to confuse them with the brackets surrounding
command line elements requiring substitution:

% <command> -[<options>] [<arguments>] \

< \

<inputfile> \

> \

<outputfile>

Character Action

> Redirect standard output

>& Redirect standard output and standard error

< Redirect standard input

>! Redirect standard output; overwrite file if it exists

>&! Redirect standard output and standard error; over-
write file if it exists

| Redirect standard output to another command (pipe)

>> Append standard output

>>& Append standard output and standard error

Important UNIX Concepts 6-11

If you are using csh and do not have the noclobber variable set (see section 9.6
Some Important Variables), using > and >& to redirect output will overwrite
any existing file of that name. Setting noclobber prevents this. Using >! and
>&! always forces the file to be overwritten. Use >> and >>& to append
output to existing files.

Redirection may fail under some circumstances: 1) if you have the variable
noclobber set and you attempt to redirect output to an existing file without
forcing an overwrite, 2) if you redirect output to a file you don’t have write
access to, and 3) if you redirect output to a directory.

Examples:

% who > names Redirect standard output to a file named names

% (pwd; ls -l) > outRedirect output of both commands to a file
named out

% pwd; ls -l > out Redirect output of ls command only to a file
named out

Input redirection can be useful, for example, if you have written a FORTRAN
program which expects input from the terminal but you want it to read from a
file. In the following example, myprog, which was written to read standard
input and write standard output, is redirected to read myin and write myout:

% myprog < myin > myout

You can suppress redirected output and/or errors by sending it to the null
device, /dev/null. The example shows redirection of both output and
errors:

% who >& /dev/null

To redirect standard error and output to different files, you can use grouping:

% (cat myfile > myout) >& myerror

Bourne Shell Family

The Bourne shell uses a different format for redirection which includes
numbers. The numbers refer to the file descriptor numbers (0 standard input, 1
standard output, 2 standard error). For example, 2> redirects file descriptor
2, or standard error. &<n> is the syntax for redirecting to a specific open file.
For example 2>&1 redirects 2 (standard error) to 1 (standard output); if 1 has
been redirected to a file, 2 goes there too. Other file descriptor numbers are
assigned sequentially to other open files, or can be explicitly referenced in the
shell scripts. Some of the forms of redirection for the Bourne shell family are:

Character Action

> Redirect standard output

6-12 Important UNIX Concepts

Note that < and > assume standard input and output, respectively, as the
default, so the numbers 0 and 1 can be left off. The form of a command with
standard input and output redirection is as shown below. We split it into
several lines here in order to show clearly the use of the < and > symbols,
so as not to confuse them with the brackets surrounding command line
elements requiring substitution:

% <command> -[<options>] [<arguments>] \

< \

<inputfile> \

> \

<outputfile>

Redirection may fail under some circumstances:

1) if you have the variable noclobber set and you attempt to redirect output
to an existing file without forcing an overwrite,

2) if you redirect output to a file you don’t have write access to, and

3) if you redirect output to a directory.

Examples:

$ who > names Direct standard output to a file named names

$ (pwd; ls -l) > outDirect output of both commands to a file named
out

$ pwd; ls -l > out Direct output of ls command only to a file
named out

Input redirection can be useful if you have written a FORTRAN program
which expects input from the terminal and you want to provide it from a file.
In the following example, myprog, which was written to read standard input
and write standard output, is redirected to read myin and write myout.

2> Redirect standard error

2>&1 Redirect standard error to standard output

< Redirect standard input

| Pipe standard output to another command

>> Append to standard output

2>&1| Pipe standard output and standard error to another
command

Character Action

Important UNIX Concepts 6-13

$ myprog < myin > myout

You can suppress redirected output and/or error by sending it to the null device,
/dev/null. The example shows redirection of standard error only:

$ who 2> /dev/null

To redirect standard error and output to different files (note that grouping is not
necessary in Bourne shell):

$ cat myfile > myout 2> myerror

6.4.3 Pipes

UNIX uses the concept of a pipe to connect the standard output of one program
directly into the standard input of another program. This is specified by
separating the two commands with the pipe operator, the vertical bar (|). The
general format is:

% <command1> | <command2> | ...

where, of course, each command can have options and arguments. To
implement pipes of commands, the shell forks off multiple processes. For
example if you run the command:

% history | more

the shell forks twice; the grandchild runs history, the child runs more
(after hooking up the right file descriptors to the right pipe ends), and the
parent shell waits for the process to finish. The history command, a
built-in, is implemented in the grandchild shell process directly, while the
more command requires an exec system call.

The tee command can be used to send output to a file as well as to another
command.

% who | tee whoout | sort

This creates a file named whoout which contains the original who output.
It also sorts the who output and sends it to standard output, the terminal
screen. The following example sends the (unsorted) who output to the file
and the screen:

% who | tee whoout

6.4.4 Filters

A filter is a command or program which gets its input from standard input,
sends its output to standard output, and may be used anywhere in a pipeline.
Examples of filters are the UNIX utilities:

• more (and less)

6-14 Important UNIX Concepts

• grep

• awk

• sort

The combination of UNIX filters grep, awk, and sort and the use of pipes is
very powerful.

more and less

The more filter allows you to display output on a terminal one screen at a time.
You press SPACEBAR to move to the following screen, and q to quit.

less is a much more flexible variant of the standard UNIX utility more and is
provided under FullFUE1. The command less lists the output (e.g.,
specified files) on the terminal screen by screen like the command more, but
in addition allows backward movement in the file (press b to go back one full
screen) as well as forward movement. You can also move a set number of lines
instead of a whole page. To view a file with the less filter, enter:

% less [<options>] [<filename>]...

The options and usage are described in the man pages for more and less.

1. FUE sets your environment variable PAGER to the less filter.

Important UNIX Concepts 6-15

After displaying a page of information, more and less display a colon prompt
(:) at the bottom of the screen and wait for instructions.

You can search for patterns in the file by entering /<pattern> at the less
prompt. Continue to search for the same pattern using a slash (/). A further
advantage is that less does not have to read the entire input file before starting,
so with large input files it starts up faster than text editors like vi.

 LESS(1) UNIX System V
LESS(1)

 NAME

 less - opposite of more

 SYNOPSIS

 less [-[+]aABcCdeEimMnqQuUsw] [-bN] [-hN]
[-xN] [-[z]N]

 [-P[mM=]string] [-[lL]logfile] [+cmd]

 [-ttag] [filename]...

 DESCRIPTION

 Less is a program similar to more (1), but
which allows

 backwards movement in the file as well as
forward movement.

 Also, less does not have to read the
entire input file

 before starting, so with large input files
it starts up

 faster than text editors like vi (1).
Less uses termcap (or

 terminfo on some systems), so it can run
on a variety of

 terminals. There is even limited support
for hardcopy

:

6-16 Important UNIX Concepts

grep

The grep filter searches the contents of one or more files for a pattern and
displays only those lines matching that pattern. grep is described in Section
7.4.2 Search for a Pattern: grep.

awk

awk is much more than a filter; it is a powerful pattern scanning and
processing language. Although you will need to spend a little time learning
how to use awk, it is very well suited to data-manipulation tasks. It handles
internally what you would have to handle laboriously in a language like C or
FORTRAN. You can do in a few lines what would take many, many lines of
FORTRAN.

awk works best when the data it operates on has some structure, for example a
document with heading levels, or a table. In the case of a table, you can tell it
the field separator (spaces, colons, commas, tabs) and it can align and interpret
the contents of the field according to the way you use it. Or you can reorder
the columns, or change rows into columns and vice-versa.

We present here some very basic information to get you acquainted with the
concepts of awk, but you will need a more in-depth reference in order to use
this utility. A widely-available book on awk is The awk Programming
Language by Aho, Kernighan, and Weinberger, Addison-Wesley. Another
good reference, from which much of the information in the present section is
extracted, is sed & awk published by O’Reilly & Associates.

sort

sort sorts the lines of the specified files, typically in alphabetical order. Using
the -m option it can merge sorted input files. Its syntax is:

% sort [<options>] [<field-specifier>] [<filename(s)>]

For example, start with the personnel file contents:

Run the command:

% sort personnel

John Smith 75 South Ave., Denver, CO 80145

Alice Jones 834 S. Jefferson St., Batavia, IL 60510

Mary Fahey 901 California St., San Francisco, CA
94121

Eric Smith 24 Birch St., Albert City, IA 50510

Important UNIX Concepts 6-17

to reorder the file contents as follows:

sort is very easy to use. Read the man page for sort to see what the available
options are and how to specify the sort fields. If a field is not specified, the sort
key is the entire line. The sorted output goes to standard output by default.

6.4.5 Regular Expressions

A regular expression is a string composed of letters, numbers, and special
symbols that defines one or more strings. They are used to specify text patterns
for searching.

A regular expression is said to match any string it defines. The major
capabilities include:

1) match single characters or strings of characters

2) match any arbitrary character

3) match classes of characters

4) match specified patterns only at the start or end of a line

5) match alternative patterns

Regular expressions are used by vi, grep, and awk (and at least a couple of
utilities not covered in this manual, for instance ed and sed). grep in fact
stands for global regular expression printer. For a complete discussion of
regular expressions, refer to a UNIX text. To get you started, we include a
table of special characters that can be used in expressions.

Note that regular expression special characters are different from those
used in filename expansion.

. Matches any single character

Example: .ing matches all strings with any
character preceding ing; singing, ping

* Represents 0 or more occurrences of the preceding
character

Example: ab*c matches a followed by 0 or
more b’s followed by c; ac, abc, abbbbbc

Alice Jones 834 S. Jefferson St., Batavia, IL 60510

Eric Smith 24 Birch St., Albert City, IA 50510

John Smith 75 South Ave., Denver, CO 80145

Mary Fahey 901 California St., San Francisco, CA
94121

6-18 Important UNIX Concepts

.* Matches any string of characters (. matches any
character, * matches any number of occurrences of the
preceding regular expression)

$ Placed at the end of a regular expression, matches the
end of a line

Example: ay$ matches ay at the end of a line; ...
today

^ Placed at the beginning of a regular expression, matches
the beginning of a line

Example: ^T matches a T at the beginning of a
line; Today ...

" Delimits operator characters to prevent interpretation

\ Turns off special meaning of the following single
character (\ is often called a quote character)

[] Specifies character classes

[...] Matches any one of the characters enclosed in square
brackets

Example: [bB]ill matches bill or Bill

There is an extended set of special characters available for full regular
expressions, including for example ? and +. These can be used in egrep and
awk. Refer to a UNIX book for information.

6.5 Job Control

Any command you give to the shell (true for all shells except sh) is a job and is
given a job number. A single command is the simplest job. A series of
commands separated by semicolons, or commands piped together, create a
single job. A script also creates a single job. A job may consist of many
processes, because each command is a process.

The job stays with its environment, for example, the current directory. If you
subsequently change directories after putting a job in the background and then
resume the background job, you will be in the original directory again.

Job control allows you to work on several jobs at once, switching back and
forth between them at will, and it allows you to stop, start, and kill them.
When you start up a job interactively, it is by default in the foreground and
attached to your terminal. You can move that job into the background so you
can start up another job or observe another job that is already running. You can
move any background job into the foreground so it is once again attached to

Important UNIX Concepts 6-19

your terminal. You can run any number of background jobs at any one time,
but there can be only one foreground job. The use of multiple windows on a
GUI makes much of this transparent.

6.5.1 Priority

You can control the priority of a command or shell with the shell command
nice:

% nice [+<n> |-<n>] [<command>]

<n> is the value by which you want to increase or decrease priority. Values
range from 1 to 19, with the default typically at 10 (values and defaults vary by
OS). The higher the nice value, the lower the priority of a process, and the
slower it runs. (You are being nicer to other users!) If no number is specified,
nice sets the priority to the OS default. If <command> is omitted, the
priority is set for the current shell. If <command> is specified, it is run at the
specified (or default) priority in a sub-shell. You can use nice to lower the
priority of a command or shell that makes large demands on the system but
isn’t needed right away.

Note that another nice command exists, /bin/nice. It is not a built-in
shell command. If you do man nice, you will get information on this one.
In order to get information on the C shell command nice, do man csh.

6.5.2 Background, Foreground, and Suspended Jobs

You run jobs in the background so that you can perform other tasks in the
foreground (i.e., interactively). Jobs are always in one of three states: running
in the foreground, running in the background, or suspended. Any job intended
to run in the background should have its output and error redirected to a file.

There are two ways to put jobs into the background:

Using the & Metacharacter

One way to start a job in the background is to append the ampersand
metacharacter (&) to the end of the command line. In the first example, the
standard output is redirected via > to a file (in this case, the syntax is valid for
both shell families):

% <command> > <outputfile> &

In the next example note that the parentheses are necessary in order to send
both commands to the background:

% (<command1>; <command2>) &

6-20 Important UNIX Concepts

The shell prints a line indicating the job number and process ID of its top-level
commands, and the job is started as a background job.

Using the Suspend Control Character

The other way is to use the suspend control character, called susp or swtch, (see
section 9.1 Special Keys) which is usually assigned to <CTRL-Z>. It stops or
suspends the foreground (the currently running interactive) job, moving it to
the background; it does not kill it.

After stopping a job, you can either resume it with the fg command or make
it run in the background with the bg command (see below). You may want to
stop a job temporarily to do another task and then return to it interactively, or
you may want to stop it in order to let it finish as a background job.

When a background job terminates, this is reported just before the next prompt
(so the message doesn’t interrupt the current foreground job).

A background job will stop if it tries to read from the terminal. If output is not
redirected, a background job can either (continue to) send output to the
terminal or be stopped if it attempts to write to the terminal. The following
command can be used to toggle this behavior:

% stty [-]tostop

The minus indicates negation, meaning that background jobs will continue to
run even if they attempt to write output to the terminal and that the output will
appear on the terminal screen. However, programs which attempt to
interrogate or change the mode of the terminal will be blocked when they are
not in the foreground whether or not tostop is set.

Listing Jobs

The jobs command lists your jobs:

% jobs [-l]

This command lists the background jobs, their job number, status, and the
command being executed. A plus sign in the output means that job is current
(in control of your terminal), a minus sign means that job is next. Current and
next refer to its relation to the foreground (see fg). The -l option lists the
process ID as well.

Commands Used for Controlling Jobs

There are a number of commands to control jobs: fg, bg, stop, kill.
All of them can take an argument which specifies the particular job, or they can
have no argument. The argument can take two basic forms: a simple process
ID number (as displayed by ps) or a form prefixed with a percent sign (%). If
no argument is given, the current job is acted upon.

Important UNIX Concepts 6-21

The % form of the argument can be %- where - indicates the previous job,
%<n> where <n> is the job number as displayed by the jobs command,
%<pref> where <pref> is some unique prefix of the command name and
arguments of one of the jobs, or %?<str> where <str> is some unique
string in one of the jobs.

You can use the fg command to move a suspended or background job into
the foreground (note that the first % on a line represents the default csh
prompt; ones that follow are part of the command):

% [fg] %[<job>]

The fg is not mandatory. If the job specification is omitted, the current job
will be brought into the foreground, and the next job becomes current.

Examples:

% fg %5 Bring job number 5 into the foreground

% %1 Bring job number 1 into the foreground

% % Bring the current job into the foreground

After stopping a foreground job, you can start it running in the background
with the bg command. bg puts the current or specified jobs into the
background, continuing them if they were stopped. In the following
commands, <job> stands for job number.

% bg %[<job>]

We described above how to stop (suspend) a foreground job with the suspend
control character (<CTRL-Z>). Similarly, you can suspend a background job
with the stop command:

% stop %<job>

You can abort a suspended or background job with the kill command:

% kill %<job>

If you attempt to exit a shell (logout) when there are stopped jobs, you will get
a warning message. A second logout will log you out if you choose not to
see what jobs are stopped before you exit. In the C shell family, background
jobs will continue running after you log out.

6.5.3 Scheduling Jobs: at and cron

UNIX provides two methods for running jobs at some specified time.

at

The first is the at utililty. This allows the user to queue a job for later
execution.

6-22 Important UNIX Concepts

The format of the at command is:

% at <time> [<date>] [+<increment>]

at reads the commands from standard input. Standard output and standard
error output will be mailed to you unless they are redirected.

The shell saves the environment variables and the working directory that are in
effect at the time you submit the job and makes them available when the job is
executed.

• The <time> can include 1, 2, or 4 numbers. One or two digits is
assumed to be hours, four digits to be hours and minutes. It can be
specified as two numbers separated by a colon (hours:minutes), either in
24-hour format or with am or pm appended. The names noon, midnight,
now, and next are recognized.

• The <date> is either a month name followed by a day number (and
optionally a year number followed by an optional comma) or a day of the
week (fully spelled out or abbreviated to three characters). The words
today and tomorrow are known. If no date is given, today is assumed if
the hour is greater than the current hour and tomorrow if it is less.

• The optional <increment> is a number suffixed by minutes, hours,
days, weeks, or years in singular or plural form.

Examples:

% at 8

% at 0800

% at 8:00am Jan 24

% at now + 1 minute

at reads from standard input, meaning you type in the commands (there may or
may not be a prompt). When you are finished, terminate input with <CTRL-D>
followed by a carriage return.

You can also redirect the input to a file of commands, for example:

% at now + 1 hour < myscript

at runs in the Bourne shell (sh) by default. If you need to force it to run in C
shell, you can use the trick illustrated in the following interactive example:

% /bin/csh << xxxxx

? at now + 2 minutes

? source .cshrc

? alias > aout

? <CTRL-D> (followed by carriage return)

Important UNIX Concepts 6-23

The first line causes csh (C shell) to read the following lines up to xxxxx or
to the end-of-file. There is no xxxxx, of course, so it reads until you give it
the <CTRL-D>. The third line runs your .cshrc. It is an illegal Bourne shell
command, therefore you can tell at ran in the C shell and that your .cshrc
file was executed. You will receive a message similar to the following, and the
results will be mailed to you (alas, at will say it’s using /bin/sh even if
you’ve “tricked” it):

warning: commands will be executed using /bin/sh

job 826157640.a at Wed Mar 6 18:14:00 1996

After 2 minutes, aout is mailed to you. It contains a list of all the aliases
defined in your .cshrc file. If you are running a script using at then the
script will be run under whatever shell you specify in the script.

For example, say you run:

% at now + 2 minutes

? <script>

? <CTRL-D> (followed by carriage return)

where <script> is a file that contains the line #!/bin/csh at the
beginning. The commands in the script will execute under csh.

cron

The second method for running jobs at some specified time is the crontab
command. It is designed for jobs that need to be run on a regular basis, e.g.,
once a night, or once per week. Note that cron, like at, uses the Bourne shell
so that output redirection must be specified using Bourne shell syntax. Scripts
will be run under what ever shell is specified in the script. If no shell is
specified then Bourne shell is used.

There are Kerberos authentication issues associated with running programs
that spawn jobs external to your login process group (Kerberos authentication
is described in Chapter 3: Logging into UNIX Systems at Fermilab). cron
sometimes falls into this category. You can run the job, but it will not run with
authentication, and most likely will not be able to write into /afs space.

The kcroninit product is provided for setting up cron jobs in a Kerberized
environment. It gets installed automatically as part of the kerberos product, and
as of kerberos v0_6, it works without systools. kcroninit creates the necessary
cron principal and keytab file so that cron jobs may be authenticated to
Kerberos under the user's principal. kcroninit can be used on each node where
cron jobs need to be authenticated, either for AFS tokens or for remote access
to other Kerberos systems. For more information, see the Strong
Authentication at Fermilab manual section 10.3.1 Specific-User Processes
(cron Jobs).

The format of the cron command is:

6-24 Important UNIX Concepts

% crontab [<filename>]

% crontab [<options>]

where <filename> is the name of a file containing the commands that you
want to have executed. If you do not specify a file, then crontab will read
commands from standard input as you type them, ending with <CTRL-D>, and
the commands will be run in Bourne shell. The system utility cron reads the
crontab file and runs the commands. Standard output and standard error will
be mailed to you unless they are redirected.

The command can also take the following options:

-r remove crontab file

-l list contents of crontab file

A cron file consists of lines of six fields each. The fields are separated by
spaces or tabs. The first five are integer patterns that specify the following:

• minute (0-59)

• hour (0-23)

• day of the month (1-31)

• month of the year (1-12)

• day of the week (0-6 with 0=Sunday)

If an asterisk appears in a field instead of a number, cron interprets that as a
wildcard for all possible values. The sixth field of a line in a cron file is a
string that is executed by the shell at the specified times.

Examples:

The user creates a cron file myfile, and runs crontab:

% crontab myfile

This command will perform an incremental backup at 10pm Monday to
Thursday and a full backup at 10pm on Friday.

#Myfile

Run script that archives to 8mm tape for backup.

Monday-Thursday at 2200 backup everything that
has been

changed. Every Friday at 2200 backup everything.

0 22 * * 1-4 /usr/buckley/daily
1>>/usr/buckley/cron/backup.log 2>&1

0 22 * * 5 /usr/buckley/weekly
1>>/usr/buckley/cron/backup.log 2>&1

The UNIX File System 7-1

Chapter 7: The UNIX File System

The UNIX file system has a hierarchical or tree-like structure with the
directory called root (/) as its source. The system is essentially composed of
files and directories. In this chapter we describe techniques for manipulating
files and directories, and commands designed to provide information about
them.

7.1 Directory Structure

The UNIX system automatically puts you at a specific location in the file
system when you log in. This is called your login directory. Typically, this is
the same as your home directory. The name of your home directory is usually
the same as your login name. Within this directory you can create files and
additional directories (sometimes called subdirectories) in which to group the
files. You can move and delete your own files and directories and control
access to them.

The root of the file system is called root and is written as a slash (/). In other
words, to change to the root directory, type:

% cd /

There is only one directory tree on a system even if several devices are
mounted in that tree. (All devices are viewed as files.) The current directory
or working directory is the directory that you are currently working in, which is
also the directory that commands refer to by default. Files in your current
directory can, therefore, be specified by their filenames only.

7.1.1 Pathnames

Wherever you can use a filename, you can also use a pathname, which is how
you point to files that are not in your current directory. You can refer to files in
other directories using either a relative path name, that is a path specified
relative to your current directory, or with an absolute path name, that is a path
specified relative to the root of the file system.

7-2 The UNIX File System

Absolute path names are preceded with /, the root directory. If a pathname
does not begin with / it is assumed to be a relative path name. Relative path
names begin with a directory or filename, a . (pronounced “dot”) which
refers to the current directory, or .. (pronounced “dot dot”) which refers to
the directory immediately above the current directory. The character / also
separates components of the pathname, which are directory names, except for
the last one, which can be either a simple filename or a directory name.

In summary, every file has a pathname, and its absolute pathname is of the
form:

/rootdir/dir2/... /filename

The following is the form of a relative pathname of a file:

dir_n/dir_n+1/... /filename

An example of an absolute path name is:

/usr/smith/project1/afile

If my current directory is /usr/smith, then I can refer to the file afile
in subdirectory project1 with a relative pathname like this:

project1/afile

Or, if my current directory is /usr/smith/project1, I can refer to a file
named fileb in /usr/smith/project2 as:

../project2/fileb

Note that you cannot necessarily tell if fileb is an ordinary file or a
directory name. Many commands will accept a directory name, and if it is a
directory name, the command in which it is used may perform the action on all
files in the directory. This behavior can be dangerous!

7.1.2 The Home Directory

Your home directory is the top of your personal branch in the file system, and
is usually designated by your username, i.e. /<path>/<username>.

Tilde (~)

In most UNIX shells other than sh, the tilde (~) stands for the home directory.
Used alone, it specifies your home directory. Followed by a different user’s
login name, it expands into the pathname of the home directory of that user.
This is a convenient way to refer to a user’s directory, because it is independent
of where the system manager may place the directory on the disk.

The use of tilde (~) to refer to a home directory is limited. It isn’t available in
the Bourne shell, and isn’t available in FORTRAN.

The UNIX File System 7-3

Of the following three examples, the first refers to the file def from your
own home directory, the second to the home directory of user jones, and the
third refers to file data1 in the subdirectory project1 of jones’ home
directory.

~/def

~jones

~jones/project1/data1

To change to jones’ home directory you’d enter:

% cd ~jones

logdir

FullFUE provides the command logdir which returns the full path of the
specified user. logdir by itself returns the path of the invoking user. For
example:

% logdir <username>

is equivalent to:

% echo <~username>

To change directories you’d enter (note the use of backquotes to use the output
of the enclosed string):

% cd `logdir <username>`

In contrast to the tilde, logdir can be used within commands, scripts,
FORTRAN and C programs, and other programs in all shells.

$HOME

The environment variable HOME is automatically set to the absolute pathname
of your home directory. Environment variables are discussed in section 9.5
Shell Variables and Environment Variables and HOME is described in section
9.6 Some Important Variables. To see the value of HOME, enter:

% echo $HOME

From some other directory, you can change to your home directory or one of its
subdirectories using a command like the following:

% cd $HOME1

or

% cd $HOME/mysubdir

1. cd by itself is equivalent to cd $HOME.

7-4 The UNIX File System

7.1.3 Command Line Directory Shortcuts

. Current directory

.. Parent directory of the current directory (“up” one
directory)

~ Your home directory (all shells but sh)

$HOME Environment variable whose value is your home
directory

~<username> Home directory of another user (all shells but sh)

/ Root directory

7.1.4 Directories and Executables

It is appropriate at this point to mention the relationship between directories
and commands. A command is simply the name of an executable file, located
in some directory. To execute a command, the shell first needs to find the
executable file. The shell therefore needs to be given a set of directories to
search. This information is provided via the environment variable PATH which
is a list of search directories. You can display it with the command:

% echo $PATH

PATH is explained more thoroughly in section 9.6 Some Important Variables.
Standard UNIX commands are generally grouped in a few standard directories
(e.g., /usr/bin), and your default PATH contains these. See section 9.6
Some Important Variables to learn how to run executables that you create and
store in your own directories.

The utility which is useful in cases where a command may be ambiguous,
for example due to aliasing (see section 9.7 The Alias Command), and you
want to know exactly which executable file or files the command runs. which
lists the files that would be executed if the specified command(s) had been run.
The syntax for which is:

% which <command> [<command2> ...]

Each argument is expanded if it is aliased, and your path is searched for the
executable files associated with the commands. See the man page for more
information.

The UNIX File System 7-5

7.2 Files

An ordinary file contains ASCII characters or binary data and is considered by
the UNIX system to be merely a sequence of bytes. No structure is imposed on
the file and no meaning attached to its contents by the system; the meaning
depends on the program that reads the file.

A directory file contains an entry for each file in that directory. The directory
entry for a particular file contains the file name and inode number. The inode
number is a volume data structure used by the file system. It has an associated
entry in the inode table which contains other information about the file such as
the owner, file protection, modification date.

A hidden file is an ordinary file whose name begins with a period (called
“dot”). The reason they are called hidden is that the ls (list files) command
does not list them by default. Use the -a option with ls to see them.
Hidden files do not appear in filename expansion of *, either. Filename
expansion is discussed in section 7.2.2, below.

UNIX does not support file versions. If you edit a file and save it with the
same name, your earlier version is overwritten. Similarly, if you copy or
rename (move) a file to a filename that already exists, the original file is
overwritten.

7.2.1 Filenames

A full file specification has only two parts, the directory specification and the
file name. A filename is composed of from 1 to 14 characters in old UNIX
implementations and a much larger number in more recent versions (up to 255,
typically). Although you can use any character in a filename except /, UNIX
assigns special meaning to many characters (metacharacters), so they should
be avoided (see section 9.2 Special Characters (Metacharacters)). It is safe to
use the upper- and lowercase letters, numbers, dash (-), underscore (_), period
(.), and comma (,). As mentioned in the previous section, files beginning
with a dot (.) are hidden files. The “filenames” . and .. (single and
double dot) are reserved. The . refers to the current directory, and the ..
refers to the current directory’s parent directory. No two files in the same
directory can have the same name, but files in different directories can have the
same name.

Dashes are fairly common in UNIX filenames simply because it’s easier to
type my-file than my_file.

Filenames are case sensitive. This means MYFILE is different from
Myfile is different from myfile is different from myFile, etc.

7-6 The UNIX File System

You cannot distinguish a directory file from an ordinary file by its name,
although some people make their own convention by beginning directory
filenames with a capital letter, or ending them in .d.

Filename extensions are not required in UNIX. You can include a period and
an extension in a filename to help describe the contents of the file, but it will
not have special meaning to UNIX itself. However, programs can make use of
extensions, for example the FORTRAN compiler expects certain extensions.
Note, you can have more than one period in a filename, for example,
lex.yy.c.

7.2.2 Filename Expansion and Wildcard Characters

The UNIX shells have a number of special characters which can be used on the
command line when specifying filenames and directory names. They allow the
shell to expand the argument into a set of filenames. These characters are
called wildcards. Filename references that contain these characters are called
ambiguous file references. Filename expansion is also called globbing.

The question mark (?) causes the shell to generate filenames which match any
single character in that position. For example, out? matches out1 but not
out12.

The asterisk (*) causes the shell to generate filenames which match any
number of characters (including zero characters) in that position. For example,
myfile matches myf*. The * alone means all files (except those that begin
with dot (.), which is a special case).

A pair of brackets ([]) surrounding a list of characters causes the shell to
match filenames containing the individual characters in that position. The
brackets define a character class and each definition can only replace a single
character in a filename. In other words, it is like a question mark that will only
allow certain characters. For example, memo1 and memoa match
memo[14a]), but memo3 and memo1a do not. A hyphen can be used to
define a range of characters, for example [a-z] represents all lowercase
characters. Thus memo[a-z] matches memoa but not memo2 or memoB.

Examples:

Character Action

 ? matches any single character in a filename

* matches any string of characters (including the
empty string) in a filename

[] matches any single character from the set
enclosed in the brackets

The UNIX File System 7-7

% ls out* lists all files beginning with out

% ls out? lists all files with 4-character names beginning with
out

% ls out[ab]* lists all files beginning with out followed by a or b
(e.g., outa4)

% ls *out* lists all files containing out

Filename expansion may surprise you with the results. For example, ls b*
would list all files starting with b in the current directory, but it would also list
the contents of all directories whose names start with b because of the way
ls behaves for a directory argument. If you want to be sure of what filename
expansion will result in, you can use the echo command to check it before
executing a command.1 For example, say you have a few matching files in
your directory for the command:

% echo *out*

You would obtain output something like this:

fout fout275 inandout out1 out2 out

Filename expansion in csh can be turned off by setting the noglob variable:

% set noglob

To turn it back on, type unset noglob.

7.3 Manipulating Files

This section describes the basic file manipulation commands:

• listing the contents of a directory

• displaying the contents of a file

• copying and renaming a file

• deleting a file

• changing a file’s access permissions

Section 7.5 Manipulating Directories describes the commands you can use to
change and manipulate directories.

1. echo is otherwise useful for sending messages to the terminal from a script and send-
ing known data into a pipe.

7-8 The UNIX File System

7.3.1 List Directory Contents: ls

The ls command, which stands for list, is used to list the contents of a
directory. ls has many options, some of which are system-dependent, so
only a few of them are described here. For a complete description of the
command, refer to the man pages for ls.

ls by itself lists the names of the files and subdirectories in the current
directory (in multicolumn format on some platforms), sorted alphabetically.

The format is:

% ls [<options>] [<filenames>]

where some of the options are:

-a List all entries, including those that begin with . (dot).

-l List in the long format, giving mode, number of links,
owner, group, size in bytes, and (by default) time of last
modification, by default sorted by filename.

-C List in columns (default on some platforms)

-F Put a / after the name of each file that is a directory, an *
after the name of each file that is executable, and an @
after the name of each file that is a symbolic link.

-R Recursively list subdirectories encountered.

-t Sort by time stamp (latest first) instead of by name. The
default time stamp is the last modification time (see
-u).

-u Use the time of last access for sorting if used with the
-t option or printed in the date column if used with the
-l option. -ult both sorts by and displays last
access date.

-d If the argument is a directory, list the directory itself, not
its contents. Use with -l to get the status (e.g.,
permissions) of a directory.

If the argument is a directory, ls displays the contents of the directory. Note
that this can happen unintentionally as a result of filename expansion. This
behavior can be prevented with the -d option. The -t option is useful
when looking at recent files:

% ls -lt

will result in the long output sorted by reverse modification date rather than by
filename.

The UNIX File System 7-9

The following is a sample output of ls -l.

The first line indicates the number of blocks used. The rest of the lines report
on (sub)directories or files in the directory being reported on. The first column
of the output is called the mode. The character in this first column indicates the
type of file, and for our purposes here, they are:

d directory

- ordinary file

The next 9 characters are interpreted as three fields of three characters each,
indicating the read (r), write (w), and execute (x) permissions for owner
(sometimes called user), group, and other, in that order (see section 7.6.1 File
Access Permissions for a discussion of permissions).

Next is the number of links to the file or directory. This refers to the number of
different names established for it. Normally files have 1, and directories have
1 each for the directory itself, its parent directory, and each of its
subdirectories. In the sample output above, notice that the directory Tools
has 3 and bin has 2. Evidently, Tools has one subdirectory and bin
has none.

The next fields are the login name of the owner, the group to which the owner
belongs, the size of the file in bytes, the date and time the file was last
modified, and, finally, the filename (which can be a directory name).

7.3.2 List File Contents: cat, less, more, head, and tail

UNIX has a number of commands that can be used for displaying the contents
of a file at the terminal.

total 251

drwxr-xr-x 3 nicholls g020c 512 May 2 08:53
Tools

drwxr-xr-x 2 nicholls g020c 512 May 2 09:01
bin

-rw-r--r-- 1 nicholls g020c 446 May 4 14:09
defaults

-rw-r--r-- 1 nicholls g020c 95418 May 1 17:42
intro.lpr

-rw-r--r-- 1 nicholls g020c 0 May 10 17:51
lsout

-rw-r--r-- 1 nicholls g020c 6683 May 1 16:46
man.lpr

-rw-r--r-- 1 nicholls g020c 12258 May 9 16:16
out

7-10 The UNIX File System

cat

cat, which stands for “concatenate and print,” is the standard UNIX file
display; it simply prints the file to the screen.1 When piped to less (see
section 6.4.4 Filters which describes less as a filter), cat displays the file
contents a screen at a time, and some simple commands may be executed at the
supplied prompt.

% cat <filename>... [| less]

As its name suggests, cat is in fact quite useful for copying and concatenating
files. Output can be piped to a file rather than to the screen, using standard
output redirection (see section 6.4.2 Standard Input and Output Redirection).
The following example concatenates the three specified files and copies them
sequentially to a single file called allthreefiles:

% cat fileone filetwo filethree > allthreefiles

less, more

A shortcut for cat <filename> |less is to use less as a file
browser:

% less <filename>

And wherever you use less, you can alternatively use more, although it is
not as functional as less. You cannot move backwards through the file with
more.

head, tail

head displays the first <n> lines of the specified file or files. If more than
one file is specified, the filename is displayed before each set of file contents of
<n> lines. <n> defaults to 10 lines.

% head [-<n>] [<filename>...]

tail displays the last lines of a file. Its syntax is a bit different:

% tail [+|-<n> lbc] [<filename>...]

The option +<n> displays the file starting <n> lines down from the
beginning of the file, -<n> displays the last <n> lines. l, b, or c
requests display of <n> lines, blocks, or characters (default is l lines). If
more than one file is specified, the filename is displayed before each set of file
contents. <n> defaults to 10 lines.

tail is useful when you want to see how far a process got. To display the
last line of a log file, enter:

1. There are better ways to display a file (see less and more, which follow cat in this sec-
tion).

The UNIX File System 7-11

% tail -1 <logfile>

7.3.3 Copy a File: cp

The command cp (stands for copy) can be used to make a copy of a file,
leaving the original version intact. You can copy a single file to another one
(in the same or a different directory), or you can copy one or more files to a
different directory, retaining the same filenames.

The syntax for these two situations varies slightly:

% cp [<options>] file1 targetfile

 the file <file1> is copied to <targetfile>, where
<targetfile> may include a path

% cp [<options>] <file1> [<file2> ...] <targetdirectory>

one or more files (<file1> <file2> ...) are copied to
<targetdirectory>

If the target is a file, its contents are overwritten unless -i is specified, in
which case you are prompted for confirmation.

Some options are:

-i If the target filename exists, you are prompted for
confirmation before overwriting.

-r Used only with the <targetdirectory> form.
Recursively copy a directory, its files, and its
subdirectories to <targetdirectory>.

The first example below copies myfile to anotherfile, both in my
current directory, prompting for verification in case anotherfile already
exists.:

% cp -i myfile anotherfile

New users may find it useful to define cpi as the alias for cp -i to use in
place of cp so that prompting always occurs. Section 9.7 The Alias
Command discusses aliases.

The second example copies files proj1 and proj2 to another directory
named newproj which is parallel to the current directory (has same parent
directory as current):

% cp proj1 proj2 ../newproj

The third example copies the file oldproj/proj1 to my current directory
(.), which is a parallel directory to oldproj (has same parent directory).
The file proj1 keeps its name.

% cp ../oldproj/proj1 .

7-12 The UNIX File System

7.3.4 Move or Rename a File: mv

The mv command (stands for move) allows you to rename a file in the same
directory or move a file from one directory to another. If you move a file to a
different directory, the file can be renamed or it can retain its original name.
mv can also be used to move and rename directories.

% mv [<options>] <source1> [<source2> ...] <target>

Depending on whether the <source(s)> and <target> are files or
directories, different actions are taken. These are described in the table below.
If <target> is a filename, only one <source> file may be specified.

An important option is:

-i If <target> exists, the user is prompted for
confirmation before overwriting.

7.3.5 Reference a file: ln

The ln (link) command allows you to create a link in one directory to a file
in the same or in a different directory, or to create a link to a different directory.
Via links, a file or directory can appear to exist in multiple places, but only
actually exist in one, thus conserving disk space. Links are often used to easily
reference files or directories that would otherwise require a long path name.

The syntax for ln is similar to that for cp and mv, and in fact they are all
run by the same executable.

The most commonly used options for the ln command are:

-i You are prompted before overwriting an existing
filename.

Source Target Result

file new file name Rename file to new name

file existing file name Overwrite existing file with source file contents;
keep existing file name

directory new directory name Rename directory to new name

directory existing directory
name

Move directory such that it becomes a subdirec-
tory of existing directory

one or more files existing directory
name

Move files to existing directory

The UNIX File System 7-13

-s This makes a symbolic, as opposed to an ordinary or
hard, link. A symbolic link can point to a file that is
in a different file system, whereas a hard link cannot.

A symbolic link displays the link and the file to which it is linked when you
run ls -l; this is the only way to know the name that a file is linked to.

Note that when using the AFS file system, hard links can only be made
between files that are in the same directory (the same volume, see section 8.5
AFS Volumes and Quota), so use the -s option even if you’re in the same
directory tree.

The syntax differs slightly for files and directories:

% ln [<options>] </path/to/file_name> </path/to/link_name>

Create the link <link_name> to reference the file
file_name. If <link_name> already exists (as a link
or as a file), it gets overwritten (unless you use option
-i).

% ln -s [<other options>] </path/to/file_name>
</path/to/link_name>

Create symbolic link named <link_name>, that links
to <file_name> which exists in the same or another
directory.

% ln -s [<other options>] </path/to/file_name1>
[</path/to/file_name2> ...] <directory>

Create a symbolic link in <directory> to each of
the listed files. The files may all exist in different
directories since the -s option is used. The link
names will be the same as the filenames they link to. If
files of the same name but in different directories are
specified, only the first file specified of that name will
have a link created.

Let’s look at an example:

% ln -s /e741/run1/e_mu2/mydata r5742

If r5742 is a directory, this creates a link called mydata in the directory
r5742 that points to /e741/run1/e_mu2/mydata. You can now
reference the data file as mydata (i.e., the same filename) as if it were in the
directory r5742.

On the other hand, if r5742 is not an existing directory then it represents the
name of the link being created. In this case, the command establishes a link
called r5742 in the current working directory that points to the file
/e741/run1/e_mu2/mydata. Running the command ls -l should
display the following output:

7-14 The UNIX File System

lrw-r--r-- 1 aheavey g020 46 Aug 29 14:26 r5742
-> /e741/run1/e_mu2/mydata

7.3.6 Remove a File: rm

The rm command (stands for remove) is used to remove the entries of one or
more files.

% rm [<options>] <file>...

Some commonly used options are:

-i Confirmation of removal of write-protected file occurs
interactively, whether the standard input is a terminal or
not. If used with the -r option, you are prompted about
each directory before it is examined.

-r Causes rm to delete the contents of the specified
directory, including all its subdirectories, and the
directory itself (recursive). This option should be used
cautiously.

The file list can include ambiguous file references, so rm should be used
cautiously. You can use the echo utility with the same ambiguous file reference
to see the list generated.

Removal of a file requires write permission to its directory, but neither read nor
write permission to the file itself. If the file has no write permission and the
standard input is a terminal, the set of permissions is printed and you are
prompted for confirmation. If the answer begins with a y, the file is deleted. If
the standard input is not the terminal, the files are deleted without
confirmation.

New users may find it useful to define rmi as the alias for rm -i to use in
place of rm so that prompting always occurs. Section 9.7 The Alias
Command discusses aliases.

7.3.7 Copy to/Restore from Archive or Tape: tar

The tar utility (tape archive) can be used to create, add to, list and retrieve
files from an archive file. Archive files are often stored on tape. The action
taken by the tar command depends on the key, which is essentially a
function option. The key must be specified on the command line as if it were
the first option. It may be followed by function modifiers, and then by options
and/or arguments. The keys and function modifiers must be grouped together
before any arguments are listed. tar does not require, but does allow, a dash
(-) before the list of keys and function modifiers. The keys and functions are:

c create a new tar file

The UNIX File System 7-15

r append specified files to tar file

t list all files in the tar file, or all files in a specified file list

u append new or changed files to tar file

x unwind entire tar file or extract specified files from tar file and
write each file to the directory as specified in the tar file relative to
the current directory

The keys, function modifiers and options are discussed in the man pages. Be
aware that they vary in some cases between UNIX flavors. The command
syntax varies somewhat from key to key, so check the man pages for that
information, too.

Creating a Tar File

When creating a tar file, we have a few recommendations for avoiding
problems:

First, when possible, create the tar file on a machine of the same flavor as the
target flavor. Occasionally a tar file doesn’t unwind properly on a different
platform.

Secondly, choose your working directory carefully. It is often convenient or
desirable to be able to specify simple relative path names for the files to
include in the tar file. For example:

% cd /path/to/dir

% tar cvf /tmp/filename.tar .

creates a tar file with all pathnames relative to /path/to/dir. In general
you should not specify the pathname explicitly on the command line, unless it
will be valid on any other system where the tar file may be unwound and used.

Thirdly, be careful choosing your target directory for the new tar file. Make
sure that the target directory is outside of the directory tree that you’re
including in the tar file. Otherwise the tar file tries to include itself, and can
grow infinitely large.

Unwinding a Tar File

To unwind a tar file, first cd to or create the target directory in which you
want the tar file unwound, then unwind the product tar file:

% cd <target_directory>

% tar xvf <path_to_unwound_tar_file>

7-16 The UNIX File System

7.3.8 Compress or Expand a File: gzip, gunzip

Several utilities are available on UNIX systems for file compression.
compress and pack are native UNIX utilities, and gzip is provided by
FullFUE. We recommend you use gzip for file compression, and its associated
utility gunzip for file expansion. gunzip recognizes and can expand files
compressed with compress and pack as well as gzip.1

The file extensions gunzip recognizes include .gz, -gz, .z, -z, _z,
and .Z. gunzip also recognizes the special extensions .tgz and .taz as
shorthands for .tar.gz and .tar.Z, respectively. When compressing,
gzip uses the .tgz extension if necessary instead of truncating a file with a
.tar extension.

You will need to reference the man pages for details on syntax, options and
usage. In their simplest forms gzip and gunzip can be used as follows,
starting, for example with the original uncompressed file bigfile:

% gzip bigfile

The result is bigfile.gz, whose size is reduced with respect to bigfile
according to Lempel-Ziv coding (LZ77), the same compression scheme used
by compress. Whenever possible, gzip replaces each file by one with the
extension .gz, while keeping the same ownership modes and access and
modification times. gzip will only attempt to compress regular files. In
particular, it will ignore symbolic links. If the compressed file name is too
long for its file system, gzip truncates it.

Compressed files can be restored to their original form using gunzip, or
equivalently by using the -d option with gzip. If the original name saved in
the compressed file is not suitable for its file system, a new name is constructed
from the original one to make it “legal”.

To restore bigfile.gz to its original name and size, enter:

% gunzip bigfile.gz

7.4 Information About Files

This section gives a cursory overview of simple uses for two very powerful
commands for dealing with files: find for searching for files and grep for
searching for strings within files. We also describe wc which displays the
size of a file, od which creates a dump of a file, and file which can
determine file type.

1. Under FullFUE on most systems (namely where gzip and gunzip are not installed in
/usr/local/bin) you will need to run setup gtools in order to access
them.

The UNIX File System 7-17

7.4.1 Find a File: find

The find utility tests each file in the given pathname list to see if it meets
the criteria specified by the expression supplied. It does this by recursively
descending the directory hierarchy for each path name. The format is:

% find <path-name-list> <expression>

<path-name-list> can contain file expansion metacharacters. Each
element in <expression> is a separate boolean criterion. A space
separating two criteria is a logical AND operator, a -o separating the criteria
is a logical OR operator. A criterion can be negated by preceding it with an
exclamation point (!). Criteria are evaluated from left to right unless
parentheses are used to override this. Special characters must be quoted (use
\) and there must be spaces on each side of the special character pair.

Some of the criteria that can be used within <expression> are:

-name <filename> True if <filename> matches the name of the
file being evaluated. Ambiguous file references
can be used if enclosed in quotes.

-type <filetype> True if the type of the file is <filetype>,
where <filetype> is either d (directory)
and f (ordinary file).

-atime <n> True if the file has been accessed in <n> days.

-mtime <n> True if the file has been modified in <n> days.

-newer <filename> True if the file has been modified more recently
than <filename> has.

-print Causes the matching path names to be displayed
on the screen.

-exec <command> \; True if <command> returns a zero exit status.
<command> must be terminated with a quoted
semicolon (note the \). An empty pair of braces
({}) within the command represents the filename
of the file being evaluated.

-ok <command> \; Same as -exec except the generated
command line is displayed and executed only if
the user responds by typing y.

In the previous list, +<n> means more than <n> , -<n> means less than
<n>, <n> means exactly <n> .

Note that find doesn’t do anything with the found files, it doesn’t even
display the names, unless instructed to.

Examples:

7-18 The UNIX File System

• Search the current directory and all subdirectories for the file
lostfile:

% find . -name lostfile -print

• List all files ending in .html in your /wwwork subdirectory:

% find wwwork -name '*.html' -print

• This command will prompt you if you want to execute more on each
file that begins with the letter d in the current directory and all
subdirectories (Enter y if you want the file displayed.):

% find . -name 'd*' -ok more {} \;

• List all files in the current directory that don’t begin with m:

% find . ! -name 'm*' -print

• Find all files in the current directory and all subdirectories that contain the
string hello:

% find . -exec grep -l "hello" {} \;

• Remove all files in your directory tree that are named a.t or have the
extension of .o and haven’t been accessed in a week:

% find ~\(-name a.t -o -name '*.o') -atime +7
-exec rm {} \;

Note that using the find command takes up a lot of system resources.

In particular on AFS systems, you may accidentally end up searching servers
all over the world if the top of the search is at the root directory (/). Generally
you should be careful to only search the part of the UNIX tree that interests
you. Here is an example:

Look for <filename> starting at the root directory (/), and exclude
searches in the /afs and /nfs branches:

% find / \(-name /afs -prune \) -o \(-name /nfs -prune \) -o
-name <filename> -print

7.4.2 Search for a Pattern: grep

The grep utility searches the contents of one or more files for a pattern.

The format is:

% grep [<options>] <pattern> [<file> ...]

Some of the options are:

-c Display only a count of lines that contain the pattern.

-i Ignore upper/lower case distinctions during
comparisons.

The UNIX File System 7-19

-l Display only the name of each file that contains one or
more matches.

The pattern can be a simple string or a regular expression (see section 6.4.5
Regular Expressions). You must quote regular expressions that contain special
characters, spaces, or tabs (this can be done by enclosing the entire expression
within single quotation marks).

Examples:

• Find all non-hidden files in the current directory containing the string
smith:

% grep -i smith *

• Search the file abc for a string beginning with f, followed by 0 or more
r’s, and ending in og (e.g., frog, fog, frrog):

% grep 'fr*og' abc

• Search the file myfile for a line beginning with a T:

% grep '^T' myfile

 or

% less myfile | grep '^T'

• Search /usr/jones/junk for the characters file followed by a
number (e.g., file1, file3):

% grep 'file[0-9]' /usr/jones/junk

• Display a line if Smith is logged in:

% who | grep smith

• Show all processes being run by Smith:

% ps -ef | grep smith

• Show all environmental variables containing <string> in their name
or their translation:

% env | grep <string>

• Show all aliases containing <string> in their name or their
translation:

% alias | grep <string>

7.4.3 Count a File: wc

The wc command, which stands for word count, counts the number of lines,
words, and characters there are in the named files, or in the standard input if
the argument is absent. If there is more than one file, wc totals the count as
well.

% wc [-lwc] [<names>]

7-20 The UNIX File System

The options l, w, and c may be used in any combination to specify that a
subset of lines, words, and characters be reported. The default is -lwc.

UNIX users frequently count things by piping them into wc. For example, to
display the number of users logged into the system, you can execute:

% who | wc -l

7.4.4 Dump a File: od

The od (octal dump) command can be used to examine the contents of a
file in various formats: octal, decimal, hexadecimal, and ASCII. The default is
octal.

The format is:

% od [<options>] [<file>] [<offset>] [|less]

If <file> is not included, standard input is assumed. The options are:

-c Produces a character dump.

-d Produces a decimal dump.

-o Produces an octal dump.

-x Produces a hexadecimal dump.

The -c option prints non-printable characters as a printable character
preceded by a backslash: \0 is null, \b is backspace, \f is form-feed,
\n is new-line, \r is return, and \t is tab.

The <offset> specifies where in the file the dump is to begin, if different
than the beginning of the file. It is of the form [+]<n>[.][b]. The + is
only necessary if you have no file specified so that the command interpreter
knows this is the offset not the file. Without . or b, <n> indicates the
dump starts at (octal) byte <n> of the file. A . displays <n> in decimal,
a b in 512-byte blocks.

We recommend that you always pipe the output of od to less (or more)
so that you can manipulate it. Large files can be unwieldy, and you may not be
able to stop the output once it’s going!

7.4.5 Determine File Type: file

The file utility can be used to determine the file type of a file according to its
contents. It bases its guesses on a list of “magic numbers” recorded in a
“magic file”, /etc/magic. Some of the file types are:

• ASCII text

• C program text

• directory

The UNIX File System 7-21

• executable

file determines the filetype by looking at the beginning of the file and
comparing it to entries in the magic file. The command format is:

% file <filename>...

7.5 Manipulating Directories

This section describes the commands you can use to organize and use the
UNIX directory structure. It describes how to make and remove directories,
and move from one directory to another. Listing the contents of a directory
(files and subdirectories) was described in a previous section. Section 7.6.2
Directory Permissions explains the meaning of access permissions as applied
to directories.

7.5.1 Print Working Directory: pwd

The pwd command (for print working directory) displays the path name of
your working (current) directory. The command format is:

% pwd

7.5.2 List Directory Contents: ls

The ls command, which stands for list, is used to list the contents of a
directory. ls has many options, some of which are system-dependent. A
few of them are described in section 7.3.1 List Directory Contents: ls. For a
complete description of the command, refer to the man pages for ls.

7.5.3 Change Directory: cd

When you first log in to the system, you are placed in your home directory,
which is then also your current working directory. You can use the cd
command (for change directory) to change your current working directory.
The command format is:

% cd [<directory>]

You can specify a complete path or a relative path. You can use .. (for the
parent directory) in your pathname. You must have execute permission (which
provides search permission in this case) on a directory to cd to it.

If <directory> is not specified, you are returned to your home directory.

7-22 The UNIX File System

The following examples illustrate moving to different directories:

• your home directory

% cd

• a subdirectory called Tools

% cd Tools

• a colleague’s home directory (using absolute pathname)

% cd /usr/jones

• a colleague’s subdirectory (using tilde)

% cd ~jones/ourfiles

• a parallel directory (has same parent directory as current directory)

% cd ../Tools

7.5.4 Make a Directory: mkdir

The mkdir command (for make directory) is used to create a directory.
The command format is:

% mkdir <dirname> ...

If a pathname is not specified, the directory is created as a subdirectory of the
current working directory. Directory creation requires write access to the
parent directory. The owner ID and group ID of the new directory are set to
those of the creating process.

Examples:

• create a subdirectory in the current working directory

% mkdir progs

• create one with a full pathname (the directory Tools must already
exist)

% mkdir /usr/nicholls/Tools/Less

7.5.5 Copy a Directory

The most straightforward way of copying a directory and its contents is to pipe
the output of the ls command (see section 7.3.1 List Directory Contents: ls)
into the file copy facility cpio (see the man pages). However this technique
does not copy subdirectories.

First, create the destination directory using mkdir (see section 7.5.4 Make a
Directory: mkdir), if it doesn’t already exist. Secondly, from the source
directory, run the command (shown with recommended options; see man pages
for option information):

The UNIX File System 7-23

% ls | cpio -dumpV <destination_dir>

The <destination_dir> must be specified relative to the source
directory.

If you need to copy a directory structure, then use the tar utility instead. It is
described in section 7.3.7 Copy to/Restore from Archive or Tape: tar. The
following sequence of commands (shown on a single line) copies a structure
from the source directory to the destination directory. The
<destination_dir> is taken as relative to the <source_dir>:

% cd <source_dir>; tar cf - . | (cd <destination_dir>; tar xfBp
-)

The “-” is used for the name of the tar file (argument to the f option) so that
tar writes to the standard output or reads from the standard input, as
appropriate.

7.5.6 Move (Rename) a Directory: mv or mvdir

See section 7.3.4 Move or Rename a File: mv for information on mv. To
move a directory (<olddirname>) and its contents to a different position in
the directory tree, use the command format:

% mvdir <olddirname> <newdirpath>

If <newdirpath> exists already, then the directory gets moved to
<newdirpath>/<olddirname>. Note that the two arguments cannot be
in the same path. For example:

% mvdir x/y x/z

is ok, but

% mvdir x/y x/y/z

is not ok.

7.5.7 Remove a Directory: rmdir

You can remove a directory with the rmdir command. The directory must
contain no files or subdirectories, and you must have write permission to the
parent directory.

% rmdir <dirname> ...

You can use an absolute or relative pathname.

You can also use rm -r as described in Section 7.3.6 Remove a File: rm.
rm -r will delete a directory, all subdirectories, and all files. This command
should be used with extreme caution.

7-24 The UNIX File System

For example, the following command deletes the directory temp, all
subdirectories of temp and all files contained in those directories, prompting
before each removal, and confirming removal of write-protected files (-i):

% rm -ir /usr/jones/temp

7.6 File and Directory Permissions

7.6.1 File Access Permissions

The UNIX file system allows you to control read, write, and execute access to
your files on the basis of user (owner), group, and other (everyone else).1 In
this section we will consider only the standard UNIX file permissions.

Note that in the AFS file system, file permissions are mediated by Access
Control Lists (ACLs) that are set on a directory level. The standard UNIX
file permissions don’t apply in this case except for the owner permissions,
which apply to all users. AFS file permissions are treated in section 8.6
File and Directory Permissions.

To determine the current permissions, use the long form of the ls command,
ls -l. Referring to the example below, the nine characters immediately
following the first field represent the one-bit flags known as the mode bits that
control file access. A dash indicates a bit is not set, r stands for read

1. Note o is for other and not for owner as on VMS.

The UNIX File System 7-25

access, w for write access, and x for execution access. The first set of three
characters refer to owner permission, the middle three for group permission,
and the last three for all other user classes.

In the example, ignoring the directory files (which have a d in position 1), the
owner has rw access to the files, whereas group and others have read (r)
access only.

chmod

The chmod command, which stands for change mode, is used to change
access permissions of a file or directory:

% chmod <mode> <filename> ...

or

% chmod <mode> <directory> ...

In the absolute form of the mode where the level of protection is specified in
octal format, <mode> looks like 741 or 554, for example, where each of the
three octal numbers represents the sum of the permissions granted to its class:
user, group, and other, in that order. The three types of permission have the
values:

read 4 (100 octal)

write 2 (010 octal)

execute 1 (001 octal)

For example, a mode of 741 means owner can read, write, and execute
(4+2+1=7); group can read (4+0+0=4); and others can execute the file
(0+0+1=1).

total 251

drwxr-xr-x 3 nicholls g020c 512 May 2 08:53
Tools

drwxr-xr-x 2 nicholls g020c 512 May 2 09:01
bin

-rw-r--r-- 1 nicholls g020c 446 May 4 14:09
defaults

-rw-r--r-- 1 nicholls g020c 95418 May 1 17:42
intro.lpr

-rw-r--r-- 1 nicholls g020c 0 May 10 17:51
lsout

-rw-r--r-- 1 nicholls g020c 6683 May 1 16:46
man.lpr

-rw-r--r-- 1 nicholls g020c 12258 May 9 16:16 out

7-26 The UNIX File System

To give this permission to a file test, you would enter:

% chmod 741 test

You can use an alternate form of <mode> in the chmod command in which
<mode> is a three-character field specifying an action to be taken. The action
is to add or subtract one or more permissions from one or more user classes. It
takes the form:

<who> <operator> <permission(s)>

These three positions within the field take the following characters:

<who> represents the user class or classes; it takes any
combination of u, g, o, and a for user (user is really
the owner), group, other and all, respectively, where all
includes the three individual classes

<operator> + or - for adding or subtracting permissions, or = for
setting a specific permission and resetting all other
permissions for the specified user class(es)

<permission(s)>any combination of r, w, and x for read, write, and
execute, indicating the permissions to be permitted,
denied, or reset.

Examples of the chmod command:

• Remove group execute permission to the file progs:

% chmod g-x progs

• For the files out and out1, add group read and write, and deny write
to other:

% chmod g+rw,o-w out out1

• Set group read permission and reset all other group permissions to
myfile:

% chmod g=r myfile

Note that classes of users or levels of protection not specified in a command
are not modified in this form of the command (with the exception that =
resets other permissions).

umask

With the umask command you can specify a mask that the system uses to set
access permissions when a file is created. In order to understand umask you
need to know that access permission at file creation is application-dependent.

The UNIX File System 7-27

Each command or application sets a file permission in its open command.1
The system then “subtracts” any user-defined mask, resulting in the final
access permission for the file. You can set a umask by this command:

% umask [<ooo>]

where <ooo> stands for three octal digits. The user-specified “mask”,
<ooo>, has the same positional structure as described above for chmod, but
specifies permissions that should be removed (disallowed).

For example, a mask of 022 removes no permissions from owner, and removes
write permission from group and others. Thus a file normally created with 777
would become 755 (this would appear as rwxr-xr-x in the format put out
by the command ls -l). The following command could be put in your
.cshrc or .profile.

% umask 022

The meaning of permissions applied to directories is described in Section 7.6.2
Directory Permissions.

7.6.2 Directory Permissions

 See section 8.6.2 Directory Permissions via Access Control Lists (ACLs) for
AFS systems.

You can grant or deny permission for directories as well as files, and protection
assigned to a directory file takes precedence over the permissions of individual
files in the directory.

• Read permission for a directory allows you to read the names of the files
contained in that directory with the ls command, but not to use them.

• Write permission for a directory allows you to create files in that directory
or to delete any file in the directory, regardless of the file protection on the
files themselves. It does not allow you to see the files or use them without
r and x directory permission. In other words, write permission to a
directory allows you to alter the contents of the directory itself, but not to
alter, except to remove, files in the directory (which is controlled by the
file’s permissions).

• Execute permission allows you to list the contents of the directory.

File access permissions of directory files are changed with the chmod
command (see section 7.6.1 File Access Permissions).

1. Normally only the loader creates files with execute permission.

7-28 The UNIX File System

7.7 Temporary Directories

By convention, there are directories named /tmp (and sometimes
/usr/tmp) where programs and users can store temporary files. Many
programs (e.g., compilers) write temporary files there or in the area specified
by the environment variable TMPDIR. Since these are public areas, it is
necessary to manage this space, which means that you cannot count on files
being retained in these directories.

Many systems on site have fairly small /tmp areas and therefore you must
be careful not to fill up this space. In general, you should only use /tmp for
very temporary, small files. On many systems files in /tmp will disappear
after a reboot or after existing for a week. You can set TMPDIR to a different
location if there is not enough space in these areas.

Contact the administrators of the particular system to find out what the current
policy is on the machine.

The AFS File System 8-1

Chapter 8: The AFS File System

 Fermilab is using AFS (Andrew File System) as a distributed file service, and
it is installed on several machines on site in a production environment,
including the FNALU cluster. This chapter discusses the basic concepts of
AFS and provides information on the commands used to manage your files and
directories in the AFS environment.

IBM, the vendor for AFS, maintains a user’s guide, a system administrator’s
guide and other documentation online at
http://www-3.ibm.com/software/stormgmt/afs/manuals/L
ibrary/index.html. Additional AFS information for webmasters is
maintained under the Computing Division web help page
http://www.fnal.gov/cd/webgroup/webhelp/webhelp.html,
called AFS Cheat Sheet for Webmasters.

8.1 Introduction to AFS

AFS is a distributed file service, in other words, a shared file system. “AFS
space” is a UNIX directory/file area starting at /afs that can be shared
between computers. This is handy when large numbers of people need to
access files in an area. Fermilab has a cell in AFS space, which is simply the
area under the AFS root directory belonging to Fermilab. Fermilab’s cell is
/afs/fnal.gov/. Any directory under this cell, e.g.,
/afs/fnal.gov/x/y/z/, has exactly the same contents when
viewed/manipulated on one computer as on another, provided both computers
implement AFS with the Fermilab cell. There is also a symbolic link (see
section 7.3.5 Reference a file: ln) to a shorthand version of the cell name,
which is simply /afs/fnal. Other cells are also accessible. They are listed
as directories under /afs, e.g., the CERN cell at /afs/cern.ch. Users
are required to authenticate to AFS; AFS authentication is now subsumed into
Kerberos authentication.

8-2 The AFS File System

8.2 How to Determine if AFS is Installed on
your System

Typically, if AFS is installed on your system, your login directory is under a
subdirectory of /afs/fnal.gov/files/home/. If you’re still not sure
if AFS is installed, issue the command:

% ps -ef | grep afsd

If you get output of the form (note the /usr/vice/etc/afsd):
root 305 1 0 Sep 30 ? 14:10 /usr/vice/etc/afsd -stat 2800 -dcache 2400
-daemons 5 -volumes 128

root 306 1 0 Sep 30 ? 5:47 /usr/vice/etc/afsd -stat 2800 -dcache 2400
-daemons 5 -volumes 128

then it is installed and running on your machine. If you do not get output lines
like this, AFS is not installed. However it is still possible that you have access
to the AFS file system via a translator1 service. We discuss translator mode in
section 8.8.2 AFS in Translator Mode. To check, enter the command:

% df |grep afs

If no output is returned, AFS is not running on your machine in any capacity.
If output is returned and the line begins with a node name preceding /afs,
for example:

nodename:/afs 144000000 0 144000000 0%

then AFS is running in translator mode. (If the output line begins with /afs,
then AFS is actually installed on your machine.)

8.3 Issues Related to Login and File Access

8.3.1 Authentication in AFS

In order to access AFS files, you must be authenticated to AFS. Once you are
authenticated, AFS issues an AFS token2. This token allows you to access the
AFS file system; without one, you can’t. The strong authentication
implementation (Kerberos V5) is integrated with AFS. Thus, if your machine
is part of the strengthened realm and it runs AFS, then when you log on and get
Kerberos V5 authentication, you also automatically get an AFS token.

1. In translator mode, a “translator machine” runs AFS and exports the AFS file tree to
other systems via NSF.
2. An AFS token is also known as a Kerberos token. Kerberos V4 is integrated into
AFS; it is independent of the Kerberos V5 that is the heart and soul of our strong authenti-
cation project, described in section 1.1 Computer Security at Fermilab.

The AFS File System 8-3

As long as you remain logged on, the Kerberos token “lives” for a period of
time equal to the renewable lifetime of the Kerberos ticket, seven days.

The token is passed to all subprocesses of the login process. All normal UNIX
interactive operations are therefore automatically authenticated, and access is
granted to files in the AFS tree, provided you have the appropriate permissions
(AFS permissions are covered in section 8.6 File and Directory Permissions).
The Fermilab standard batch interface fbatch provides for token renewal at job
execution time, since you can’t control when your batch jobs actually run.

Situations occasionally arise in which you are not automatically authenticated
(e.g., some remote login methods) or you lose your token (e.g., you remain
logged in for more than seven days). When this happens and you need to
obtain a new token, take the following steps:

• First reauthenticate on your local machine to Kerberos.

• Next, forward your tickets to open remote sessions via the k5push
command. This command is described in Strong Authentication at
Fermilab section 9.2.6 Update Tickets on Remote Terminal Sessions.

• If your local machine runs AFS, you’re done.

• If not, ensure that your connection to the remote AFS session is
encrypted. On that session, enter the command aklog. aklog
prompts you for your AFS password (different from your Kerberos
password) and obtains a Kerberos token, thus granting AFS
authentication and access to files.

A few notes:

1) Running pagsh1 first is much more secure than just running klog.
It ensures that the token is associated with your pagsh process, and thus
with all processes you spawn. klog by itself gets a token associated
with your UID, which is not always unique. This could potentially
allow another user to share the token, which is undesirable.

2) You cannot enter the commands on one line in the format
pagsh;klog. pagsh starts a new sh shell, and klog needs to be
run at the new shell prompt on the next line.

3) pagsh changes your shell to sh, so you will need to run your preferred
shell afterwards (e.g., enter tcsh, bash, or ksh on the command
line). You may also then want to source your .login and .cshrc
or your .profile and .shrc scripts to ensure that your FUE
environment is back to normal.

1. The pagsh command creates a new command shell (owned by the issuer of the
command) and associates a new process authentication group (PAG) with the shell and the
user. A PAG is a number guaranteed to identify the issuer of commands in the new shell
uniquely to the local Cache Manager. The PAG is used, instead of the issuer's UNIX UID,
to identify the issuer in the credential structure that the Cache Manager creates to track
each user.

8-4 The AFS File System

 There are Kerberos authentication problems with running programs that
spawn jobs external to your login process group. cron sometimes falls into
this category (it is described in section 6.5.3 Scheduling Jobs: at and cron).
You can run the job, but it will not run with authentication, and most likely will
not be able to write into /afs space. From your Kerberized machine, use
kcron (see the Strong Authentication at Fermilab manual, section 10.3
Automated Processes).

Be aware that being logged on as root grants you no special permissions in
/afs file space; there is no such thing as being “authenticated as root”.

8.3.2 Managing your Token

View Active Tokens

To see what tokens you currently hold, you can issue the command:

% tokens

The output should look similar to this:
Tokens held by the Cache Manager:

User's (AFS ID xxxx) tokens for afs@fnal.gov [Expires Feb 11
12:57]

If the output shows no tokens, then you only have access to (usually a very
limited number of) files designated as accessible to the special user
system:anyuser (a pre-defined AFS protection group; see section 8.7 AFS
Protection Groups). As its name implies, this designation includes anyone
who can access the system (e.g., a user with a standard UNIX password but no
AFS password).

Get Back an Expired Token

See the notes in section 8.3.1 Authentication in AFS regarding this operation.

Destroy a Token

 Logging out does not destroy your token; it remains “live” for up to 26 hours
afterwards. This is a security risk. Prior to logging out, we advise that you
issue the command:

% kdestroy

This destroys your Kerberos tickets and your AFS tokens. If you create a
.logout file (see section 9.8 Tailoring Your Environment), you should
include this command in it.

The AFS File System 8-5

8.4 AFS File System Commands

AFS provides a command (with many options) that allows you to address file
system issues such as checking permissions, checking quota, making mount
points, finding where a volume (see section 8.5 AFS Volumes and Quota) is
mounted in the file tree, and so on. The AFS file system (fs) command is
entered in the format:

% fs <main_option> <options> <arguments>

Many of the options can be abbreviated, and option flags can often be omitted
from the command. To get a list of the main options of the fs command,
enter:

% fs help

Here is an edited output listing showing only a few of the main options:
fs: Commands are:

listacl list access control list

listquota list volume quota

lsmount list mount point

quota show volume quota usage

rmmount remove mount point

setacl set access control list

setquota set volume quota

whereis list file’s location

whichcell list file’s cell

To get usage information on a particular fs main option, enter:

% fs <main_option> -help

For example:

% fs setacl -help

Usage: fs setacl -dir <directory>+ -acl <access list entries>+ [-clear] [-negat

ive] [-id] [-if] [-help]

A complete command reference can be found at the IBM site under
http://www-3.ibm.com/software/stormgmt/afs/manuals/L
ibrary/index.html.

8.5 AFS Volumes and Quota

UNIX divides disks into partitions. AFS further divides partitions into
subsections called volumes. A volume houses a subtree of related files and
directories. Normally, volumes are considerably smaller than traditional file

8-6 The AFS File System

systems. For example, each user’s home directory would normally be stored in
a separate volume. Large sub-directories are further sub-divided. You do not
need to know which file server houses any volume. AFS locates volumes
automatically.

For information on disk areas in AFS space available to Fermilab users, see
http://www.fnal.gov/cd/forms/afsdisk.html. To examine the
quota on a volume within AFS, the fs listquota command may be used.
You can request information on several directories at a time. For example the
following command requests information on the current working directory (.)
and on another one specified via the environment variable $UAFWWW:

% fs listquota . $UAFWWW

Volume Name Quota Used % Used Partition

room.aheavey 130000 126024 97%<< 75% <<WARNING

files.reports.UNIX 2000000 77370 4% 63%

The output includes the name of the volume containing the specified
directory(ies), the quota size, amount used, percent used, and the percent of
space used on the partition containing the volume. You might also get a
warning! All sizes are in kilobytes.

8.6 File and Directory Permissions

8.6.1 File Permissions

File permissions work quite differently from those in standard UNIX, which
are described in section 7.6.1 File Access Permissions. In AFS, you can use
the chmod command just as you would in a standard UNIX file system,
however it behaves differently.

Although in AFS all the permission bits on a file may be examined or changed,
only the owner bits are actually used in AFS, and they apply to all users of
the file (as permitted by users’ ACL settings; see below). To turn off write
access to a particular file by all users, including the owner, you just need to
turn off the owner write bit of the file (see section 7.6.1 File Access
Permissions), e.g.,

% chmod 555 <filename>

or

% chmod a-w <filename>

8.6.2 Directory Permissions via Access Control Lists

The AFS File System 8-7

(ACLs)

All other AFS permissions are done with Access Control Lists (ACLs) which
take effect at the directory level only. Every directory has its own ACL that
defines who can access the directory and its files. Each entry in an ACL
consists of a username or an AFS protection group paired with a set of
permissions (e.g., read, write). An AFS protection group is simply a list of
usernames grouped to share a set of permissions in one or more ACLs. If a
user is in two or more ACL entries (e.g., is a member of two groups listed in
the ACL) with different permissions assigned, the user gets the union of the
permissions.

The permissions granted in a directory’s ACL represent the maximum
permissions. If a file in the directory has more restrictive permissions set, the
user is limited by the restrictions on the file. If a file has more lenient
permissions set, the user is limited by his ACL entry.

ACL rights include:

l lookup rights (allows user to issue an ls command on files in the
directory, examine the directory’s ACL, and access the directory’s
subdirectories which are protected by their own ACLs)

i insert rights (allows user to create new files or copy files into the
directory)

d delete rights (allows user to remove files or move them to other
directories)

a administrator rights (allows user to change the ACL for a directory;
note that you always have this right for your home directory even if
you accidentally remove this ACL.)

r read rights (allows user to look at the directory’s contents and to
read the data in the files contained in the directory)

w write rights (allows user to modify the contents of the files in the
directory and to change the UNIX mode bits with the command
chmod)

k lock rights (allows user to run programs that need to flock files in
this directory, i.e., to apply or remove an advisory lock on an open
file; see the man pages for flock)

Rights may also be referred to by special names that designate
commonly-assigned combinations of rights. These are called combination
rights. The defined combination rights are:

write all rights but a (i.e. lidrwk)

read l and r rights only

all all rights (i.e. lidarwk)

8-8 The AFS File System

none no rights; this removes the group’s or user’s entry from the ACL
entirely

Combination rights can be used in commands, as shown in the examples
below.

A couple of notes:

• In general, users are granted all permissions on their home directories.

• When a child directory is created, it inherits the parent directory’s ACL.
The child directory’s ACL can then be changed. Users of the child
directory must have at least lookup rights (l) on the parent directory.

Examining a Directory’s ACL

You can examine a directory’s ACL rights with the command:

% fs listacl /path/to/directory

This returns a listing of all the users/groups (groups are defined in section 8.7
AFS Protection Groups) that have any permissions on the directory, and what
the permissions are. The directory path can be absolute (starting from root) or
relative to the current working directory. For example, if you run the
command:

% fs listacl /afs/fnal.gov/files/wwwdocs/cd/webwg/tools

The system returns information in the format:
 Access list for /afs/fnal.gov/files/wwwdocs/cd/webwg/tools is

 Normal rights:

 lauram:www_cd_webwg_tools rlidwk

 nicholls:www_cd rlidwk

 hanson:newsmachine rlidwka

 nicholls:wwwdocs rlidwka

 system:administrators rlidwka

 system:anyuser rl

The group lauram:www_cd_webwg_tools has read, list, insert, delete,
write, and lock permissions in this directory (all but administer permissions),
i.e., the group has write rights. Any member of that group has these
permissions in this directory.

Adding/Changing/Deleting a Directory’s ACL

You can modify a directory’s ACL for a particular AFS group or for an
individual using the fs setacl command. The fs setacl command
only changes the ACL for a single directory, not for a directory tree. The
command syntax is:

% fs setacl -dir /path/to/directory -acl <group> \
<permission(s)>

The AFS File System 8-9

where <group> is either a group or an individual username. When it is a
group, it must be entered in the format
<group_owner>:<group_name>.

We recommend that you generally define ACL entries for groups rather than
individuals; it is much easier to maintain. When you need to add or remove
permissions for an individual, it is easier to add/remove the user from one or
more groups than to track down every directory whose ACL includes that user.

The directory path in the command can be absolute (starting from root) or
relative to the current working directory. Any pre-existing permissions for the
group or individual are invalidated; the specified permissions collectively
become the new set of permissions. The permissions apply to all members of
the specified group.

For example, in order to modify the ACL for the current directory (.) to
include only read and lookup rights for any user (including unauthenticated
users), enter:

% fs setacl -dir . -acl system:anyuser rl

or, using combination rights syntax:

% fs setacl -dir . -acl system:anyuser read

The group system:anyuser is described in section 8.7 AFS Protection
Groups.

A note for Web page providers: set the permissions for system:anyuser
to rl on directories containing files that you want to make accessible via a
Web browser.

To remove all permissions in an ACL for a particular group (or individual),
issue the fs setacl command with no permissions, e.g.,

% fs setacl -dir /path/to/directory -acl <group> ""

or, using combination rights syntax:

% fs setacl -dir /path/to/directory -acl <group> none

8.7 AFS Protection Groups

An AFS protection group is a list of usernames grouped to share a set of
permissions on one or more directories. Any user can include any existing
protection group in any ACL within your AFS cell. A protection group is
designated in the format:1

<group_owner>:<group_name>

1. You may encounter groups that do not have an owner prefix; these are special groups
created by the system administrators.

8-10 The AFS File System

AFS provides three predefined protection groups:

system:anyuser This is similar to world permissions in UNIX. Any AFS
user (anywhere in the world, and not necessarily
authenticated) can access files or directories, according
to the permissions granted (e.g., read, write).

system:authuserThis is a more restrictive version of
system:anyuser. Only users who have
authenticated within the local cell (/afs/fnal.gov
at Fermilab) may access files, according to the
permissions granted (e.g., read, write).

system:administrators

This group includes only the few people in the
/afs/fnal.gov cell authorized to administer AFS.

As determined by your project’s /afs area manager(s), you may need to
manage, and possibly create, protection groups.

Groups can be owned by other groups or by individual userids. Group
members often are not allowed to add or remove other members of the group.
If a group is owned by a group, then all the members of the owner group can
by default add or remove other members from the owned group. This can
avoid problems when key individuals are unavailable. Having one group
consisting of a few key individuals, and using this group as the owner for all
your other groups is a nice, neat way to organize your groups. Find out from
your /afs area manager how group ownership and permissions are assigned
within your project or on your system.

AFS provides the pts command (protection server) for group-related tasks.
Like the fs command, pts has several main options. Issue the command
pts help to list the main options (the list shown here has been abbreviated
to contain only the options we discuss in this section):

pts: Commands are:

adduser add a user to a group

chown change ownership of a group

creategroup create a new group

delete delete a user or group from database

examine examine an entry

listowned list groups owned by an entry or zero id gets orphaned groups

membership list membership of a user or group

removeuser remove a user from a group

setfields set fields for an entry

A complete command reference can be found at the IBM site under
http://www-3.ibm.com/software/stormgmt/afs/manuals/L
ibrary/index.html.

The AFS File System 8-11

8.7.1 Permissions for Performing Group-Related Tasks

Group characteristics (e.g., membership, ownership) can only be seen and/or
modified according to the permissions set on the group. Here we present a
brief explanation; more detailed information can be found at the IBM site
under
http://www-3.ibm.com/software/stormgmt/afs/manuals/L
ibrary/index.html.

Every group has a set of five access flags, which represent permissions for
performing sensitive tasks regarding (1) status, (2) ownership (listing owners),
(3) membership (listing members), (4) adding members, and (5) removing
members. There is a pts main option associated with each of these tasks:

status (s) pts examine

owned (o) pts listowned

membership (m) pts membership

add (a) pts adduser

remove (r) pts removeuser

Each flag has one of three possible values: its first letter in lowercase, its first
letter in uppercase, or a hyphen. The value determines which users can issue
the corresponding command option for the group as follows:

lowercase letter (s, o, etc.) all members of the group

uppercase (S, O, etc.) all users (i.e., system:anyuser)

hyphen (-) group owner and members of
system:administrators only

As an example, we’ll issue a pts examine command and examine its
output:

% pts examine lisa:uss-group

Name: lisa:uss-group, id: -316, owner: lisa, creator: hanson,

membership: 14, flags: S-M--, group quota: 0.

The permissions information is contained in the flags entry. The flags
S-M-- are the default flags when a group is created (all users can check status
and membership information, only group owner and administrators can verify
ownership and add/remove group members).

If you can’t successfully issue one of the pts command options, check the
access flags! Of course if you can’t issue pts examine to check the flags,
then you don’t have status permissions for the group.

8-12 The AFS File System

8.7.2 Listing Information about Groups

List Members of a Group

To list the members in a group, use the command:

% pts membership <group>

For example:

% pts membership lauram:www_cd_webwg_tools

returns the output:
 Members of lauram:www_cd_webwg_tools (id: -454) are:

 nicholls

 hathaway

 stolz

 george

 lauram

 dwalsh

 nelly

List Groups in which an Individual is a Member

To list the groups to which an individual belongs, again use pts
membership, but with the user’s id as the argument:

% pts membership <username>

For example:

% pts membership aheavey

Groups aheavey (id: 6302) is a member of:

 nicholls:www_reports

List Groups Owned by Group or Individual

To show what groups a particular group or user owns, issue the command:

% pts listowned <group>

where <group> is actually either the owner group or an individual owner
username. If you try to list groups owned by someone other than yourself, you
may find that you do not have permission to do so.

Here are a couple of examples. To check groups owned by the group
nicholls:wwwdocs, issue the command:

% pts listowned nicholls:wwwdocs

Output is returned in the format:
Groups owned by nicholls:wwwdocs (id: -306) are:

The AFS File System 8-13

 nicholls:www_cd_support

 nicholls:www_cd_mgmt

 nicholls:www_faw_events

 nicholls:www_orgs_folkclub

 nicholls:www_directorate

 nicholls:www_cd_ups

 nicholls:www_cd_webwg

To check groups owned by the individual user lauram, issue the command:

% pts listowned lauram

Output is returned in the format:
Groups owned by lauram (id: 1866) are:

 lauram:wwwmachine

 lauram:expwwwmachine

 lauram:expwwwadm

Show Group Ownership

To find a group’s owner, use the command:

% pts examine -name <group>

This is helpful to determine if a group is owned by an individual or a group.
For example, to find the owner of the group nicholls:www_reports,
run the command:

% pts examine nicholls:www_reports

Name: nicholls:www_reports, id: -378, owner: nicholls:wwwdocs, creator: hanson,

 membership: 5, flags: S-M--, group quota: 0.

Its output in the entry owner indicates that it is owned by a group
(nicholls:wwwdocs), not by the individual nicholls.

8.7.3 Modifying Group Characteristics

Change the Owner of a Group

Note: It is best to change the owner of the group before you run fs setacl
to add directory permissions for the owned group.

You can change ownership of a group using the command:

% pts chown -name <owned_group> -owner <owner_group>

Let’s take for example the group owner1:groupname1, where owner1
is an individual. We want to change its ownership to a group. The group we
want to own it is designated owner2:groupname2. We issue the
command:

% pts chown -name owner1:groupname1 -owner owner2:groupname2

8-14 The AFS File System

The owned group is now designated owner2:groupname1. Notice that it
takes its owner designation from the owner group, and maintains its former
group name. Here’s a more real-life example for clarity:

% pts chown -name lauram:www_cd_webwg_tools -owner \
nicholls:wwwdocs

The old lauram:www_cd_webwg_tools is now designated
nicholls:www_cd_webwg_tools.

You can change a group’s ownership to itself (and set the group’s access flags
appropriately if needed) to allow all members of the group to add/remove other
members and perform other administrative tasks. To change the group’s
ownership to itself, issue the pts chown command with the same group as
both arguments:

% pts chown -name nicholls:wwwdocs -owner nicholls:wwwdocs

The group designation <group_owner>:<group_name> does not
change. If you need to reset the group’s access flags, see the documentation on
pts setfields at
http://www-3.ibm.com/software/stormgmt/afs/manuals/L
ibrary/unix/en_US/HTML/AdminRef/auarf225.htm#HDRPTS_
SETFIELDS.

Note that there is a potentially confusing consequence of the way the group
names change. All groups look like they’re owned by individuals. You can
always issue the command:

% pts examine -name <group>

to determine if the owner is an individual or a group, as shown under Show
Group Ownership in section 8.7.2 Listing Information about Groups.

Add a Member

To add a member, use the command:

% pts adduser -user <username> -group <group>

For example:

% pts adduser -user nelly -group lauram:www_cd_webwg_tools

The new member (nelly) must have an account on the system/cluster that
mounts the AFS files he or she needs to access.

Remove a Member

To remove a member from a group, use the command:

% pts removeuser -user <username> -group <group>

The AFS File System 8-15

Create a Group

Check with your /afs area manager before creating new groups. As groups
proliferate, system management can become more difficult.

To create a new AFS protection group, use the command:

% pts creategroup -name <group>

or, leaving off the -name option flag for simplicity:

% pts creategroup <group>

Always enter a group in the format <group_owner>:<group_name>;
don’t enter only the <group_owner> portion. By default, the group owner
is yourself.1

As an example, user lauram could run the command:

% pts creategroup lauram:www_cd_webwg

Remove a Group

To remove a group, use the command:

% pts delete -nameorid <group>

For example:

% pts delete -nameorid lauram:www_cd_webwg_tools

8.8 Implications of ACLs

Kerberos aside, the implementation of security in our Fermilab AFS cell is
based on the notion that sharing information is more important than trying to
protect it. Therefore, in most cases, the default has been to set ACLs to have
the least security that is still reasonable. As currently implemented, all user
home directories come with their ACL set so that system:anyuser has
rl (read and lookup) permissions. A Mail subdirectory (used by the MH
mail readers) is provided with more secure permissions.

The practical implication of this is that anyone on the internet running an AFS
client can read your files, unless you change the ACL. (The AFS client for
Windows bypasses Kerberos authentication.) Home directories are writable
only by their owners (that is, the owner has rldiwka permission), but the

1. There is an option (-owner) to set the owner to another individual or a group, but we
recommend that you just use chown afterwards as described in section 8.7.3 Modify-
ing Group Characteristics.

8-16 The AFS File System

world can read them. This is probably fine in many cases, but you should be
aware of it and protect your files as you see fit, according to the guidelines
presented below.

8.8.1 Protecting your Subdirectories

You can protect any single directory by changing its ACL to turn off
permission for system:anyuser as well as for other users or groups that
should be denied permissions. For example, if you use the mail reader pine,
you may want to protect the message subdirectory mail. To make it
completely inaccessible by system:anyuser, you’d issue this command:

% fs setacl $HOME/mail system:anyuser none

On the other hand, if you need to allow others to write into any of your
directories, the default permission is too constraining. Say you are in a
collaborative effort with user mrchips. You could allow him full permission in
your $HOME/shared directory by issuing the command:

% fs setacl $HOME/shared mrchips all

Recall from section 8.6.2 Directory Permissions via Access Control Lists
(ACLs) that if a user is in two or more groups that have different permissions
on a directory, the user gets the union of the permissions.

Also, recall from section 8.6.2 that the fs setacl command only changes
the permission for a single directory. If you have a directory hierarchy on
which you want to change permissions, you’ll have to use a UNIX command
that traverses down the tree and changes all the directories as it goes. The
find command can be used (see section 7.4.1 Find a File: find), but it must
be used judiciously in the AFS environment!

The find command is not recommended for inexperienced UNIX users
(see section 8.10.2 AFS and the UNIX Command “find”).

 As an extension of the above example, say you had a directory hierarchy under
$HOME/shared to which you wanted to allow mrchips full access. The
find command could be used instead of fs setacl, as follows:

% find $HOME/shared -type d -print -exec fs setacl -dir {} -acl\
mrchips all \;

This would traverse down from the $HOME/shared directory, changing the
ACL for each of the directories it finds. The -print argument causes the
system to print out all the directories the command encounters, allowing you to
monitor the progress.

The AFS File System 8-17

Protecting your Home Directory

... we do not recommend that you set the ACL on your home directory such
that system:anyuser has no permissions (i.e., combination rights
none) in order to keep your top level directory private. There are at least a
couple of undesirable consequences:

• If you ever managed to log in unauthenticated, you wouldn’t be able to
enter your home directory. In fact you might not be able to log in at all,
depending on the UNIX operating system.

• The dot files in your home directory (e.g., .login, .profile) would
be unreadable by unauthenticated system processes, which could cause
them to break. For example, if system:anyuser does not have at
least rl permissions on your home directory, the sendmail program
will not be able to read your .forward file, and your mail forwarding
will break.

If for some reason you really want to protect your home directory, you can do
so to the extent that only l (lookup) permission is granted. However, you
must make sure that any files that must be world readable, such as your
.forward file, remain accessible. Be aware that it is not always obvious
which files must remain world readable in order to preserve the behavior
of your environment. You can protect your home directory as follows
(Proceed with caution!):

1) Every AFS home directory is created with a subdirectory called
public. Move the files that must remain world readable into this
directory.

2) For each file moved into public, create a symbolic link in your home
directory to the file in the public directory. Use the same filename.

3) After all the necessary files are moved and linked, then shut off all
permissions except l (lookup) on your home directory.

Note that you must leave the l permission turned on or programs won’t be
able to find the file in public via the symbolic link.

Here is a sample session, assuming the only file that must remain world
readable is .forward (there would actually be many files). It would be run
from the user’s home directory:

% mv .forward public/.forward

% ln -s public/.forward .forward

% fs setacl . system:anyuser l

We strongly recommend that you make your home directory world readable,
and simply keep your private files in protected subdirectories. That said, ...

8-18 The AFS File System

8.8.2 AFS in Translator Mode

Translator mode is not terribly reliable, and we don’t recommend it.

If your machine is accessing AFS via a translator node, you do not get
authenticated when you log in, and in fact you can’t run the aklog program
discussed in section 8.3.1 Authentication in AFS. You cannot access your AFS
login area. You only have access to directories for which an ACL is defined
for system:anyuser. You have access to files in those directories
according to the ACL entry for system:anyuser and the file owner bits,
as usual.

At Fermilab most of the UPS products (see section 1.3 The Fermi UNIX
Environment (FUE) and Product Support) are set with read permissions (rl)
for system:anyuser, thus allowing access to products maintained in the
/afs products area from a machine running in translator mode. This is not
true for products that are site-licensed, which are made accessible only to users
on site.

A system admin can replace the aklog program with the following script:
#!/bin/sh

/usr/krb5/bin/rsh -F fsut01 /usr/afsws/bin/knfs/ `hostname`

where fsut01 is the translator. The user can do this to get an NFS
translator token for their host.

8.9 File Locking in AFS

The file locking mechanism in AFS does not really follow POSIX1 semantics.
There are a few issues to mention:

• Files may only be locked as a whole; regions of a file may not be locked.

• File locking only works properly and reliably from a single system. If a
file is locked from one client and an attempt is made to access the file
from another client, the error EWOULDBLOCK is returned.

• There is no deadlock prevention in AFS, so deadlock situations can occur
with file locking.

• Any program that attempts to use byte-range file locking in AFS will get
a message from the cache manager warning that other users may be
accessing the same file. Usually these messages can be safely ignored.

1. IEEE's Portable Application Standards Committee (PASC) is the group that has and
continues to develop the POSIX family of standards. POSIX stands for Portable Operating
System Interface (X). It is the IEEE's version of UNIX. For more information, see
http://www.pasc.org/.

The AFS File System 8-19

Generally we don’t recommend including applications that depend on file
locking in the AFS file space. Contact the help desk at
http://csdserver1.fnal.gov/HelpDesk/cd/ for more
information or for resolution of a problem.

8.10 Frequently Asked Questions

8.10.1 Lost Access to Files

Why can’t I access files I’m supposed to be able to edit?

First see what permissions you have by checking:

• which groups have rlwidk permissions on the directory (use fs
listacl <directory>)

• that you are in at least one of these groups (use pts membership
<username>)

• that the owner of the file has the standard rw UNIX permissions (see
section 7.6.1 File Access Permissions)

Your AFS authentication may have expired. Remember that AFS
authentication lasts only as long as the maximum renewable Kerberos
authentication (six days at Fermilab). If your authentication has expired, you
will not have access to your files. You can reauthenticate to AFS by
reauthenticating to Kerberos.

8.10.2 AFS and the UNIX Command “find”

Why shouldn’t I use “find” in AFS space?

You should be very careful about using any command that traverses the file
system on a machine that has /afs mounted. Be aware that a find on
your system starting at root (/) will traverse the whole AFS file tree, including
all the other AFS sites mounted on our cell. This is particularly problematic on
some workstations, like Solaris 1 Suns, which by default run a nightly cron job
that traverses the whole file system. Also note that the -mount and -xdev
options (e.g., find / -mount ... -print) won’t recognize an /afs
file system boundary; find can’t tell the difference between local files and
AFS files. The find command is discussed in section 7.4.1 Find a File:
find.

8-20 The AFS File System

8.10.3 Error Messages

What does it mean if I get an error message like this:

afs: Waiting for busy volume 536870945 in cell fnal.gov

This is an error message from AFS that indicates that you are trying to access a
volume that is busy. There may be a number of perfectly normal reasons for
this. It generally means that either your volume is in the process of being
cloned for a nightly backup, or one of the system administrators is in the
process of moving your volume to a different disk because the one you are on
is filling up. Normally the process that generated the error will just hang
harmlessly for a few minutes until the process that locked the volume finishes.
If this goes on for more than 20 minutes or so, contact the help desk and
inquire about what is going on.

8.10.4 Retrieving Old Files

What if I need to retrieve yesterday’s copy of a file?

Daily backups of the entire Fermilab cell are available from
/afs/fnal.gov/files/backup/. For example if your home area is
/afs/fnal.gov/files/home/room3/joe, you should be able to find
yesterday’s files in
/afs/fnal.gov/files/backup/home/room3/joe. Only
backed-up files show up there. The backups are done at 12:45 a.m. seven days
a week.

If you cannot locate your files, contact the help desk to request that your
backup volume be mounted so that you can access it.

8.10.5 Link Failure

Why did my link fail?

Hard links can be used only within an AFS volume, not across volumes.
Generally, you should use symbolic links. Links are discussed in section 7.3.5
Reference a file: ln.

Working Environment 9-1

Chapter 9: Working Environment

This chapter describes the methods used to set up your working environment in
UNIX. Some of these are standard UNIX (e.g., shell and environment
variables), and some are provided and/or customized by the login scripts
provided by FullFUE.

9.1 Special Keys

UNIX has a number of special keys that perform particular functions. Some
important ones are the keys necessary to backspace over a character when
entering a command, to delete the whole line being entered, and to interrupt
execution. These are user-configurable, and have different defaults based on
the shell, the version of UNIX, and your login files. If your system has
FullFUE installed, run

% setup setterm

and these special keys will be set as described in the table:

Name
Control

Char
Function

erase DEL or back-
space

Erase character. Backspace and erase one character
(the key used depends on terminal setting). Some-
times, especially within tcl/tk applications, you
must use <Ctrl-h>.

werase <Ctrl-w> Delete the rightmost word typed in.

kill <Ctrl-x> Kill (erase) the line typed in so far. If you prefer to
use <Ctrl-u> for this function, uncomment the line
#stty kill '^u' in your .login file (C
shell family), or #stty kill in your .pro-
file file (Bourne shell family).

intr <Ctrl-c> Interrupt the program currently running.

9-2 Working Environment

To display the current settings for your terminal, enter:

% stty -a

The output of this command is described in section 9.3 Terminal
Characteristics. If the keys don’t seem to work as described here or you want
to change them, refer to that section.

Tabs

UNIX relies on the hardware tabs of your terminal. If they are not set or if they
are set in an unusual way, displays may appear strange on your terminal. You
can set the tabs manually on your terminal, or you can use the tabs command
to set them. The command with no arguments:

% tabs

will set tabs in the usual UNIX way, 8 spaces apart.

Special Note Regarding Backspace and Delete Keys

In some unusual circumstances of setup and keyboards you may also need to
issue this set of commands to get the backspace key to work as expected:

% stty erase "^?"

% stty intr "^C"

% stty kill "^X"

Sometimes there is trouble with the delete key. Adding the following text to
your .profile or .login will make the key useful:

 case $TERM in

 vt100)

 stty erase \^? ;;

rprnt <Ctrl-r> Reprint the line typed in so far.

flush <Ctrl-o> Stops terminal output until you press a key.

susp <Ctrl-z> Suspend the program currently running and put it in
the background. This does not stop the process!

stop <Ctrl-s> Stop the display. To resume, press the start key
(<Ctrl-q>)

start <Ctrl-q> Start the display after stop.

eof <Ctrl-d> Send the program an end-of-file character.

Name
Control

Char
Function

Working Environment 9-3

 xterm)

 case "`xdpyinfo | grep ‘vendor string’`" in

 DigitalEquipmentCorp) stty erase \^? ;;

 Network\ Computing\ Devices) stty erase \^H ;;

 Silicon\ Graphics) stty erase \^H ;;

 *) stty erase \^H ;;

 esac

 ;;

 esac

Special Note for ksh Users Regarding Arrow Keys

To make the up and down arrow keys work and therefore to enable command
line editing and recall in ksh, include the following lines in your .shrc file
(or .kshrc):

set -o emacs

alias __A=’^P’

alias __D=’^B’

alias __B=’^N’

alias __C=’^F’

Note that the A, D, B, and C are preceded by two underscores, and that you
need to insert an actual control character, not simply carat-P or carat-B. A
control character typically needs to be preceded by a “quoting” character,
which differs from editor to editor.

For this (these) editor(s): ... enter this immediately before the control
character:

vi <Ctrl-v>

emacs <Ctrl-q>

NEdit Use Insert Control Character from the Edit
menu.

We believe this prescription works on all UNIX operating systems, regardless
of how you’re connected (e.g., telnet, xterm).

9-4 Working Environment

9.2 Special Characters (Metacharacters)

9.2.1 Slashes

Backslash

The backslash (\) character is used on the UNIX command line to mask the
special meaning of the character immediately following it (no spaces
inbetween) so that the command interpreter takes the character literally. It is
called a quoting character. For example:

% <command> \<CR>

causes the carriage return (<CR>) to be ignored, allowing you to continue
typing your command on the following line.

Forward Slash

The forward slash (/) character is the symbol for the root directory. In path
names it acts as a separator between directories in the hierarchy, and between
the last directory and the file, if one is specified. For example:

/<dir>/<subdir_1>/.../<subdir_n>/filename

9.2.2 Quotes and Parentheses

Different types of quotes have special meanings:

• Normal single quotes (apostrophes) around a string ('string') tell the
command interpreter to take the string (string) literally.

• Double quotes around a string ("string") also tell the command
interpreter to take the string literally, but allow interpretation of variables
that follow a $ character ($ preceding a variable name outputs the value
of the variable; see section 9.5 Shell Variables and Environment
Variables).

 Section 6.1.2 Command Interpretation by the Shell further explains single
and double quotes in command interpretation, and provides an example.

• Single backquotes around a command string (`string`) tell the
interpreter to run the command(s) in the string, and to use the output of
the command(s) in place of the string itself. This is useful for combining
two commands into one, and for doing iterative tasks within shell scripts
(shell scripts are introduced in section 5.4 Shell Scripts).

Working Environment 9-5

• A string of commands enclosed in parentheses (e.g.,
(<command1>;<command2>)) is run in a subshell. (In section 6.1.1
Programs, Commands and Processes we discuss the difference between
shell commands and non-shell commands. A non-shell command always
runs in a subshell; when enclosed in parentheses, the command starts a
second subshell.)

Command Separators

• The semicolon (;) character separates successive commands on a single
command line. For example,

 % <command1> ; <command2>

 executes <command1>, and when it finishes, <command2> gets
executed.

• The ampersand character (&) is similar to the semicolon (;) but does not
wait for <command1> to finish.

• A double ampersand (&&) runs <command2> only if <command1>
was successful.

• Piping commands is discussed in section 6.4.3 Pipes. A pipe (the pipe
symbol |) tells <command2> to use the output of <command1> as
input.

• A double pipe (||) runs <command2> only if <command1> fails.

Other Special Characters

Special characters such as the asterisk (*), the question mark (?), square
brackets ([...]) are used as wildcards in file expansion (section 7.2.2
Filename Expansion and Wildcard Characters). Note that to prevent file
expansion, these characters must be prefaced by a backslash (\).

Other sets of characters are used in input/output redirection (redirection
metacharacters, see section 6.4.2 Standard Input and Output Redirection), and
in regular expressions (section 6.4.5 Regular Expressions) as wildcards,
delimiters, and other special pattern-matching characters. Refer to these
sections for specific information.

9.3 Terminal Characteristics

You can specify your terminal type to UNIX if the default is not suitable. To
do so, enter the command for the C shell family:

% set term=<termtype>

9-6 Working Environment

or for the Bourne shell family:

$ TERM=<termtype>; export TERM

where <termtype> is the name of a terminal type supported on the system.
vt100, vt220 and xterms are acceptable terminal types. If you always use the
same kind of terminal, you may want to put this command in your .login or
.profile. Note that the standard Fermi files attempt to set this variable
correctly.

In Section 9.1 Special Keys we listed some terminal control functions. Recall
that you can display the settings with the stty command:

% stty -a

The format on each machine is different but should indicate approximately the
same information. The following is the output from a Silicon Graphics
workstation. The settings reflect the FUE defaults.

In this display the second and third lines display the FUE default control
characters. The character ^ indicates the control key (e.g., ^C represents
<CTRL-C>). Your reference books will most likely tell you to delete a
character with the # key and delete a line with the @ key, but this is not
correct under FUE. Use the character indicated as ERASE in the stty output
for single character deletion, and kill for whole line deletion. The Fermi
UNIX Environment defaults for these operations are the DELETE key and
<CTRL-X>, respectively.

You can display a description of all of the options reported by stty with the
command:

% man stty

If you don’t like the FUE defaults, you can also set these functions with the
stty command. The form for setting them is:

% stty <control-char> <c>

speed 9600 baud; line = 1;

intr = ^C; quit = ^; erase = DEL; kill = ^X; eof = ^D; eol
= ^@; swtch = ^Z

lnext = ^V; werase = ^W; rprnt = ^R; flush = ^O; stop = ^S;
start = ^Q

-parenb -parodd cs8 -cstopb hupcl cread clocal -loblk
-tostop

-ignbrk brkint ignpar -parmrk -inpck istrip -inlcr -igncr
icrnl -iuclc

ixon ixany -ixoff

isig icanon -xcase echo echoe echok -echonl -noflsh

opost -olcuc onlcr -ocrnl -onocr -onlret -ofill -ofdel
tab3

%

Working Environment 9-7

where:

<control-char> is one of the functions in the table in section 9.1 Special
Keys.

<c> is the representation of the key to be used for that
function. A control character is specified preceded by a
caret: ^x represents <CTRL-X>.

Example:

% stty kill '^y'

There are two special representations: ^? is interpreted as the DELETE key
and ^- is interpreted as undefined. You must include the quotes as shown in
the example so that special characters are not interpreted incorrectly. You must
be careful not to have two functions represented by the same key.

There are many other options that can be set with stty. Others that might be of
interest are echoe which specifies that deleted characters are erased, and
-tabs which specifies that the tab character be translated into the appropriate
number of spaces. Refer to the man pages for more information.

9.4 Information Distribution System: NIS

NIS (Network Information System) is a system that distributes information
throughout a cluster. We define a UNIX cluster as a group of machines that
share both a common password file (or user database), and a common file
system, especially for login directories. NIS is usually used to provide the
common password file, and the common file system is typically NFS or AFS.

NIS is installed on FNALU and many other UNIX clusters at Fermilab. In
order to determine if NIS is running on your system, execute the command:

% domainname

If it returns a value, then NIS is running on your cluster. If no output is
returned, then it is not. Many UNIX clusters use NIS to share a common login
area across several machines. Note that it is possible for both AFS and NIS to
be installed on a system.

9-8 Working Environment

9.5 Shell Variables and Environment Vari-
ables

Every UNIX process runs in a specific environment. An environment consists
of a table of environment variables, each with an assigned value. When you
log in certain login files are executed. They initialize the table holding the
environment variables for the process. (Exactly which files run will be made
clear later in this chapter.) When this file passes the process to the shell, the
table becomes accessible to the shell. When a (parent) process starts up a child
process, the child process is given a copy of the parent process’ table.
Environment variable names are generally given in upper case.

The shell maintains a set of internal variables known as shell variables. These
variables cause the shell to work in a particular way. Shell variables are local
to the shell in which they are defined; they are not available to the parent or
child shells. Shell variable names are generally given in lower case in the C
shell family and upper case in the Bourne shell family.

9.5.1 C Shell Family

The C shell family explicitly distinguishes between shell variables and
environment variables.

Shell Variables

A shell variable is defined by the set command and deleted by the unset
command. The main purpose of your .cshrc file (discussed later in this
chapter) is to define such variables for each process. To define a new variable
or change the value of one that is already defined, enter:

% set <name>=<value>

where <name> is the variable name, and <value> is a character string
that is the value of the variable. If <value> is a list of text strings, use
parentheses around the list when defining the variable, e.g.,

% set name=(<value1> <value2> <value3>)

The set command issued without arguments will display all your shell
variables. You cannot check the value of a particular variable by using set
<name>, omitting =<value> in the command; this will effectively unset
the variable.

To delete, or unset, a shell variable, enter:

% unset <name>

Working Environment 9-9

To use a shell variable in a command, preface it with a dollar sign ($), for
example $<name>. This tells the command interpreter that you want the
variable’s value, not its name, to be used. You can also use ${<name>},
which avoids confusion when concatenated with text.

To see the value of a single variable, use the echo command:

% echo $<name>

If the value is a list, to see the value of the nth string in the list enter:

% echo $<name>[<n>]

The square brackets are required, and there is no space between the name and
the opening bracket.

To prepend or append a value to an existing shell variable, use the following
syntax:

% set name=prepend_value${name}

or

% set <name>=${<name>}<append_value>

Note that when a shell is started up, four important shell variables are
automatically initialized to contain the same values as the corresponding
environment variables. These are user, term, home and path. If any of these are
changed, the corresponding environment variables will also be changed.

Environment Variables

Environment variables are set by the setenv command, and displayed by
the printenv or env commands, or by the echo command as
individual shell variables are. Some environment variables are set by default
(e.g., HOME, PATH).

The formats of the commands are (note the difference between set and
setenv):

% setenv [<NAME> <value>]

% unsetenv <NAME>

where <value> is interpreted as a character string. If the string includes
blanks (i.e., if it encompasses multiple values), enclose the string in double
quotes ("), e.g.,

% setenv NAME "<value1> <value2> ..."

The current environment variable settings can be displayed using the setenv
command with no arguments.

9-10 Working Environment

To use an environment variable in a command, preface it with a dollar sign ($),
for example $NAME. This tells the command interpreter that you want the
variable’s value, not its name, to be used. You can also use ${NAME}, which
avoids confusion when concatenated with text.

To prepend or append a value to an existing environment variable, use the
following syntax:

% setenv <NAME> "<prepend_value>${<NAME>}"

or

% setenv <NAME> "${<NAME>}<append_value>"

If the pre- or appended value is the value of a preexisting environment
variable, enclose the variable name in braces, too, e.g.,

% setenv <NAME> "${<NAME>}${XYZ_VAR}"

Appending and prepending is commonly used with the PATH variable, and a
colon is used as a separator, e.g.,

% setenv PATH "${PATH}:${XYZ_DIR}"

9.5.2 Bourne Shell Family

The Bourne shell family does not really distinguish between shell and
environment variables. When a shell starts up, it reads the information in the
table of environment variables, defines itself a shell variable for each one,
using the same name (also uppercase by convention), and copies the values.
From that point on, the shell only refers to its shell variables. If a change is
made to a shell variable, it must be explicitly “exported” to the corresponding
environment variable in order for any forked subprocesses to see the change.
Recall that shell variables are local to the shell in which they were defined.

Shell variables are defined by assignment statements and are unset by the
unset command. The format of the assignment statement is:

$ NAME=<value>[; export <NAME>]1

where <NAME> is the variable name, and <value> is a character string
that is the value of the variable. There are no spaces around the equal sign (=).
The unset command format is:

$ unset <NAME>

If the string includes blanks (i.e., if it encompasses multiple values), enclose
the string in double quotes, e.g.,

$ NAME="<value1> <value2> ..."

1. In most cases you will want to include the optional part of the command, so that it
reads: NAME=value; export NAME

Working Environment 9-11

The values of all the current variables may be displayed with the set
command.

To use a variable in a command, preface it with a dollar sign ($). This tells the
command interpreter that you want the variable’s value, not its name, to be
used. For example, to see the value of a single variable, enter:

$ echo $<NAME>

You can also use ${<NAME>}, which avoids confusion when concatenated
with text.

To prepend or append a value to an existing environment variable, use the
following syntax:

$ <NAME>=<prepend_value>$<NAME>

or

$ <NAME>=$<NAME><append_value>

Appending and prepending is commonly used with the PATH variable, and a
colon is used as a separator, e.g.,

$ PATH=${PATH}:${XYZ_DIR}

9.6 Some Important Variables

These variables are important for all shells, unless noted otherwise.

DISPLAY

In order to use an X windows application, the environment variable $DISPLAY
must be set correctly. Normally the FullFUE login files set it correctly for you.
Its value is of the form <node:screen.server>. At Fermilab, this will
generally look like <node>.fnal.gov:0.0 where <node> is your
machine name.

To find the node name on a UNIX workstation, run funame -n.

HOME

Your home directory is the top of your personal branch in the file system, and
is usually designated by your username, i.e., /<path>/<username>. The
value of the variable HOME is the pathname of your home directory. The
command cd without arguments always returns you to $HOME. In all shells
except sh, the tilde (~) symbol used in filename expansion, expands to the

9-12 Working Environment

value of this variable. For example ~/myfile is equivalent to
$HOME/myfile. The structure ~<username> is equivalent to the
$HOME directory of user <username>.

PATH

The PATH variable lists the set of directories in which the shell looks to find the
commands that you enter on the command line. (For the C shell family, the
shell variable path takes its value from PATH.) If the path is set incorrectly,
some commands may not be found. If you enter a command with a relative or
absolute pathname, the shell will only search that pathname for it, and not refer
to PATH.

If you include the current working directory, “dot” (.), in your PATH, the shell
will always find your current working directory. This allows you to run
executable files from your current working directory by typing in only the
filename. The FullFUE login files include the dot at the end of the path for
you.

For the C shell family, see the following line in the setpath.csh file:

set path = ($path .)

For the Bourne shell family, see the following line in the setpath.sh file:

PATH = ${PATH}.:

See section 9.8 Tailoring Your Environment for information on these files. If
“dot” is not in your PATH, then in order to execute a file, you need to precede
the executable filename by ./ on the command line. This provides the
current directory pathname explicitly.

LINES and COLUMNS

These variables control the number of lines and columns are displayed on your
screen. The csh family syntax is:

% setenv LINES <n>

% setenv COLUMNS <n>

to set the number of lines or columns to <n>.

For Solaris, use instead:

% stty -rows <n>

% stty -cols <n>

MANPATH

The MANPATH variable lists the set of directories in which the shell looks to
find man pages.

Working Environment 9-13

SHELL

This variable is set to your default shell. Your default shell is determined by
the last field in your password entry (see section 5.1.2 Starting a Shell).

ignoreeof

This shell variable is in csh, tcsh, ksh and bash, but not in sh. When the ignoreeof
variable is set, you cannot exit from the shell using <CTRL-D>, so you cannot
accidentally log out. You must use exit or logout to leave a shell (see
section 3.6 Logging Out).

noclobber

This shell variable is in csh, tcsh, ksh and bash, but not in sh. With the noclobber
variable set, you are prevented from accidentally overwriting a file when you
redirect output. It also prevents you from creating a file when you attempt to
append output to a nonexistent file.

noclobber has no effect on utilities such as cp and mv. It is only useful for
redirection. See sections 6.4.2 Standard Input and Output Redirection and 7.3
Manipulating Files.

9.7 The Alias Command

The alias command allows you to create your own names or abbreviations
for commands by performing string substitution on the command line
according to your specifications. Aliases are recognized only by the shell that
invokes them; spawned processes do not “inherit” them.

Never use the actual command syntax as an alias for itself. If for some reason
an error occurs and the login file which defines your aliases doesn’t run, UNIX
executes the standard version of the command. Normally you’d see an error
message in this case, but what if you miss it? This can be disastrous. For
example, if you are accustomed to using rm (remove file(s), see section 7.3.6
Remove a File: rm) as an alias for rm -i (remove file(s), but prompt for
confirmation), when you run rm you will expect a confirmation prompt. If
the alias didn’t get defined you won’t get a prompt, and you may end up
removing files you need. That is why we suggest rmi as an alias for this
command.

9.7.1 C Shell Family

The format of the alias command is:

9-14 Working Environment

% alias [<new> [<old>]]

When you enter <new> the shell substitutes <old>.

The first example causes ls -l to be executed when the command ll is
entered:

% alias ll ls -l

The next example creates the command dir to list directory files only:

% alias dir 'ls -l | grep ^d'

grep in this case searches for a d in the first column of each line.

9.7.2 Bourne Shell Family

Alias

The alias command is supported by ksh and bash, but not sh. For the
entire Bourne shell family you can use shell functions instead of aliases; we
discuss these below. The format of the alias command is:

% alias <name> = '<alias_contents>'

The first example causes ls -l to be executed when the command ll is
entered:

% alias ll='ls -l'

The next example creates the command dir to list directory files only:

% alias dir='ls -l | grep ^d'

grep in this case searches for a d in the first column of each line.

Shell Functions

The Bourne and Korn shells support shell functions, which are similar to shell
scripts in that they store a series of commands for execution at a later time.
Shell functions are more quickly accessed than scripts because they are stored
in memory instead of a file, and the shell preprocesses them. They can be used
in place of aliases in order to be completely portable between sh, ksh, and bash.

The format for declaring a shell function is:
function-name()

{

 commands

}

Working Environment 9-15

where function-name is what you’ll use on the command line to call the
function. Typically people declare functions in their .profile. You can
include anything you’d include in a shell script. For more information on shell
functions, see a UNIX text.

9.8 Tailoring Your Environment

This section discusses the FUE-customized login files (also called the Fermi
files) used to set up your UNIX environment. Under FullFUE you will
automatically have your own copy of these files in your home directory1. The
default files exist in /usr/local/etc and you can recopy them to your
home directory if you ever need to. Once you understand the functions of the
various files, you can tailor them to suit your tastes.

Many of these files include sample code that you may want to activate. A
pound sign (#) in the first column indicates a comment line. To activate a
command line that’s been “commented out”, remove the #.

9.8.1 C Shell Family Fermi Files

The C shell executes hidden FUE-customized files at various times in your
session. They include the files .cshrc and .login, which you may
choose to further modify.

When you log out, the shell looks for a logout script in your home directory
called .logout. FullFUE does not provide this file, but you can create it
yourself, and it will get run automatically. This file is not required.

As an example, including the clear command in your .logout file
contents clears the screen when you logout.

We also recommend including the kdestroy command in the .logout
file to clear your Kerberos credentials and your AFS tokens, if any.

.cshrc and fermi.cshrc

Upon logging in, the first file to execute is the .cshrc located in your home
directory. The shell also executes this file each time you invoke a new C shell,
for example when you execute a C shell script or otherwise fork a new process.

Your .cshrc file:

• sets up the machine id, type, and operating system

1. Exceptions are the fermi.* and setup.* files which are called directly
from /usr/local/etc.

9-16 Working Environment

• sets up UPS

• establishes a reasonable default path (and therefore PATH) by running
/usr/local/etc/setpath.csh, and MANPATH

• sets fermimail as the standard mail alias

• runs setup shrc

fermi.cshrc also calls /usr/local/etc/local.cshrc which
may set other environment variables.1 You do not have a copy of
fermi.cshrc in your home directory; it is not designed to require
individual customization.

The file .cshrc should contain all your aliases so that child processes have
access to them; many suggested aliases are provided for you to activate, and
you can define your own. You can also set shell variables (noclobber and
ignoreeof are already set for you) and parameters that are local to a shell.

Don’t set any environment variables here. Any changes to their values will
remain after you terminate a forked process, thus changing your standard
environment for the duration of your login session.

.login and fermi.login

The .login file is executed only at login time. After execution of
.cshrc, the .login file located in your home directory is run. The default
.login file first executes the file /usr/local/etc/fermi.login.

fermi.login performs several actions:

• sets umask (default file access permissions) so others can read and
execute but not modify or delete your files

• determines the terminal type (and makes “best effort” at determining
DISPLAY variable)

• sets common terminal characteristics

• sets a host of environment variables

You do not have a copy of fermi.login in your home directory; it is not
designed to require individual customization.

Next, the .login file sets your prompt, and sets the variables history and
savehist. You can edit your .login to modify your path and/or terminal
settings, change the default values of environment variables or create your
own, and/or include commands that you want to execute once, at the beginning
of each session (for instance setup <product> commands).

1. This is a file for things that the local system manager wants to add to the login scripts.
It may or may not have been created on your system.

Working Environment 9-17

.logout

The C shell executes the .logout file in your home directory (if you have
created one) when you log off the system.

Execute files to modify current session

If you modify your .cshrc or .login files and you want them to take
effect in the current session, you must execute them with the source
command:

% source .cshrc

% source .login

This is explained in section 5.4 Shell Scripts.

9.8.2 Bourne Shell Family Fermi Files

The Bourne shell executes hidden FUE-customized files at various times in
your session. When you log on in the Fermi environment, the .profile
and .shrc files in your home directory are executed for sh, bash, and ksh.
Your .shrc file is also executed at any time a new bash or ksh is invoked.1

The name of the file .shrc is determined by the ENV environment variable
which is set to ~/.shrc in the standard .profile, it is not a standard
UNIX feature.

.profile and fermi.profile

The .profile file first executes
/usr/local/bin/fermi.profile. This file performs several actions:

• sets umask (default file access permissions) so others can read and
execute but not modify or delete your files

• sets up the machine id, type, and operating system

• establishes PATH (by running /usr/local/etc/setpath.sh) and

MANPATH.

• determines the terminal type

• sets a host of environment variables

• sets common terminal characteristics

1. On some of the more recent OS releases /bin/sh is a link (links are described in
section 7.3.5 Reference a file: ln) to the korn shell (ksh). ksh is a superset of sh, so
this shouldn’t present any problems for you. One difference is that your .shrc file
gets sourced when you run /bin/sh scripts.

9-18 Working Environment

You do not have a copy of fermi.profile in your home directory; it is
not designed to require individual customization.

The .profile file sets your prompt and the variables that govern your
history list, your default editor, and your command line editor. You can edit
your .profile to modify your path and/or terminal settings, change the
default values of variables1 or create your own, and/or include commands that
you want to execute once, at the beginning of each session (for instance
setup <product> commands).

.shrc and fermi.shrc

The .shrc file first executes /usr/local/etc/fermi.shrc which
sets up UPS and performs some machine-dependent functions.

The .shrc file should contain all your aliases2 so that child processes have
access to them; many suggested aliases are provided for you to activate, and
you can define your own. You can also set variables (noclobber and ignoreeof are
already set for you except in sh) and parameters that are local to a shell, and
you can activate and define functions.

Execute files to modify current session

If you modify your .shrc or .profile files and you want them to take
effect in the current session, you must execute them with the . command:

$. .shrc

$. .profile

This is explained in section 5.4 Shell Scripts.

9.8.3 Storing Customized Code

If you wish to maintain versions of distributed code customized to your own
needs, we recommend that you store them in the following directories:

$HOME/bin for machine-neutral code

$HOME/bin.$ARCH for architecture-specific code; $ARCH is the
value returned by funame -s (e.g., SunOS,
IRIX).

The path names for these directories will be added to your PATH when the
Fermi files are invoked.

1. Remember for sh, there is not really a difference between shell and environment vari-
ables; see section 9.5.
2. Aliases are available for bash and ksh, but not for sh; see section 9.7.2.

Working Environment 9-19

9.9 Multimedia File Support

Applications such as Web browsers and mail handlers need to be able to handle
files of many different types. The standard used for identifying multimedia file
types is called Multipurpose Internet Mail Extensions (MIME).

When a server sends a document to a client, it usually includes a section that
identifies the document’s type so that the file can be presented properly. The
identifier is called a MIME type, and consists of a general type (e.g., text,
image, application, audio, video) and a subtype which specifies the format.
These two elements are separated by a slash. Examples of MIME types are:

text/plain

text/html

image/jpeg

image/gif

application/postscript

A file called .mailcap1 is used to map MIME types to external viewer
programs, thus providing a recipe for displaying/playing multimedia files.
When you first run setup www (or setup
<your-favorite-browser> in a FUE environment, a default
.mailcap file gets created in your $HOME directory if it doesn’t already
exist. If an earlier version of the file is found, the terminal displays a message
saying that you can update it from the file in
$NETSCAPE_DIR/lib/TypeMap. For most situations, the .mailcap
file should be sufficient as provided.

Each entry in the .mailcap file consists of two fields separated by a
semicolon (;). The first field is the MIME type in the format
type/subtype. You may see asterisks used as wildcards to specify all of
the subtypes of a particular type (e.g., video/*). The second field specifies
the display command. It requires a full shell command, including the
pathname for the external viewer and any command line arguments. Some
examples of entries from the TypeMap file are:

image/xwd; display %s

image/x-xwd; display %s

image/x-xwindowdump; display %s

audio/*; sfplay %s

video/mpeg; mpeg_play %s

video/*; animate %s

application/postscript; ghostview %s

application/x-dvi; xdvi %s

application/pdf; xpdf %s

1. Its name refers to the fact that it was originally designed for multimedia mail, however
its role has since expanded, and will probably continue to do so as more and more pro-
grams become multimedia.

9-20 Working Environment

The %s is a printf-style parameter (see man printf) for the string
representing the filename.

Sometimes, if the MIME type is not sent in the file’s header, the multimedia
application displaying it needs to determine the file’s MIME type from its file
extension. In this case, the application references a file called mime.types
which provides the mapping between file extensions and MIME types. This
file is usually not required, and in fact a default mime.types file is not
even provided.

To add support for a new MIME type with an associated file extension, you
would need to create a mime.types file to provide the file extension
mapping, and then edit your .mailcap file to include an entry that maps the
new MIME type to an external viewer that can display the data.

For example, say you want to add support for MIME type application
with (fictional) subtype xyz. The files come with the extension xyzz,
viewable via the program viewxyz. You would need to create mime.types
and include the following line in it:

application/xyz xyzz

Note there is no semicolon (;) in a .mime.types entry. Then in
.mailcap, you would need an entry as follows:

application/xyz; viewxyz %s

Editors 10-1

Chapter 10: Editors

Several text editors are available at Fermilab. In this chapter we present our
view of the advantages and disadvantages of the available editors, and we
provide some basic information on the setup and use of each one. You will
learn how to invoke each editor, and how to create, edit, and save a file in each
one using a small subset of commands and features.

10.1 The Available Editors

vi A native UNIX screen editor. It is not generally
considered to be one of the better available editors,
however knowing the basics is useful for two reasons:
1) you may occasionally encounter an application that
throws you into a vi session, from which you’ll at least
want to exit, and 2) vi is the one editor you are
guaranteed to find on all UNIX machines1.

emacs A powerful modern public-domain screen editor. You
will find emacs installed on most UNIX machines.

xemacs An incarnation of the advanced, self-documenting,
customizable, extensible real-time display editor emacs.
It provides many powerful display and user-interface
capabilities not found in emacs.

NEdit A popular and intuitive X-based editor written at
Fermilab for UNIX.

1. In addition, UNIX provides sed for non-interactive editing and awk for more sophisti-
cated and complex non-interactive editing. These two products are not covered in this
manual.

10-2 Editors

10.2 Comparison of Editors

The following table discusses the advantages and disadvantages of each of the
above-mentioned editors.

Note: For all editors used with X display, the DISPLAY variable (see section 9.6
Some Important Variables) must be set properly.

10.3 Getting Started with the Editors

In this section we present a few important commands for each editor. The
minimal information necessary for you to edit and save a simple file is
provided. All these editors have many commands and sophisticated features
that we do not cover here.

Editor Advantages Disadvantages

vi Available on all supported platforms
and systems as a native UNIX tool.
Well-documented. It is set as the
default editor for many applications
on many systems.

Considered to be very primitive in its
screen capabilities. Non-intuitive inter-
face. Lowest common denominator of
screen editors.

emacs Widely available public domain soft-
ware package. Well documented.
Many macros and enhancements
available via the internet. Lan-
guage-specific text editing modes
(e.g., English, Lisp, C, FORTRAN).
Lots of expertise and consulting
available via newsgroups, etc. Very
configurable. EDT-style keypad
emulation available. X and ASCII
modes. Supports file versions.

Requires installation of emacs. Inter-
face not very intuitive.

Xemacs Same as for emacs, plus more. Intui-
tive, GUI interface. Language-spe-
cific syntax-highlighting.
Multi-windowed, interactive,
object-oriented class browser.

Requires installation of Xemacs.

NEdit Very intuitive and well-documented.
Customizable. Gaining popularity
world-wide. X-based.

Requires installation of NEdit.
Requires X-based terminal. Not avail-
able on all systems/platforms.

Editors 10-3

10.3.1 vi

As we mentioned in section 10.1 The Available Editors above, you may
occasionally find yourself thrown into the vi editor unexpectedly, and you will
certainly want to know how to exit, if nothing else. For that reason alone you
should become familiar with a few vi commands. As is typical in UNIX, the vi
commands are case sensitive.

vi requires no setup. Invoke it using the command:

% vi [<filename>]

Once the file is opened, you are in command mode. From this mode you can
issue commands, move the cursor, and invoke insert mode.

To enter insert mode, type i. Text you type will be inserted before the cursor.
From insert mode you can enter new text in the file. Press the ESCAPE key to
exit insert mode and return to command mode. On many keyboards the
ESCAPE key is labelled; if not, the sequence <CTRL-[> is mapped to the escape
function.

Some useful vi commands available in command mode

h,j,k,l move cursor left, down, up, right, respectively

H move to top line of screen

L move to bottom line of screen

<CTRL-F>, <CTRL-B>scroll forward, backward one screen

/<pattern> search for <pattern>

/ repeat search in forward direction

x delete current cursor position

X delete back one character

dw delete current word

dd delete current line

<n>dd delete <n> lines starting with current

p insert (paste) last deleted text after cursor

:r <filename> read in contents of <filename> after cursor

:x quit vi, writing file only if changes were made

:w write file, do not quit

:w <file> save copy to <file>, do not quit

:q! quit file, discarding edits

Most UNIX guides contain a complete description of vi.

10-4 Editors

10.3.2 emacs and xemacs

We’ll cover these two editors in the same section because although they are
separate products, they are closely related.

emacs is a popular editor available on the net. It can be invoked in windows
mode or ASCII mode. Many UNIX books cover emacs, and a good reference
for GNU emacs is Learning GNU Emacs (O’Reilly & Associates). Further
documentation can be found from the man pages.

xemacs is a graphical, X window implementation of emacs, with a few extra
bells and whistles. (It is somewhat fancier than emacs in windows mode, and
not to be confused with it.) xemacs is very similar in appearance and operation
to many PC text processing applications for Windows. It is menu/mouse
driven, with keyboard shortcuts available. xemacs has commands for passing
single command lines to shell processes; it can also run a shell interactively.

Setup and Invoke emacs

To use emacs, the product needs to be installed. To set it up (under UPS),
include in your login script or enter:

% setup emacs

The mode (X or ASCII) in which emacs attempts to start-up is determined
according to your DISPLAY variable. To invoke emacs, type:

% emacs [<options>] [<filename>] [&]

To invoke it in ASCII mode without a new window, type:

% emacs -nw [<options>] [<filename>]

Setup and Invoke xemacs

To use xemacs, the product needs to be installed. To set it up (under UPS),
include in your login script or enter:

% setup xemacs

To invoke xemacs, type:

% xemacs [<filename>] [&]

Help Facilities

emacs/xemacs has an extensive interactive help facility, but the facility
assumes that you know how to manipulate emacs windows and buffers.
<CTRL-H> enters the Help facility. <CTRL-H>-T enters the help tutorial,
which can teach beginners the fundamentals of emacs in a few minutes.
<CTRL-H>-A enters Help Apropos, to help you find commands by function.
For emacs in windows mode, there is also a HELP menu. <CTRL-H>-I enters

Editors 10-5

the Info facility which brings up the on-line documentation browsing system.
The initial page (the Directory node) gives a menu of major topics. The
information is presented in a hierarchical tree format. xemacs provides this via
an INFO button.

Keyboard Commands

emacs/xemacs commands use the Control key and the Meta key1. In the
following list C- indicates that the control key is pressed at the same time as
the character that follows. Similarly, M- indicates the use of the Meta key,
although it’s not necessary to keep the Meta key pressed down while typing the
next character. Note that some command sequences use multiple keystrokes,
with and without the Control and Meta keys. A sequence like C-x u means
hold down control while you press x, then just press u. Following is a list of
the emacs commands used most often:

C-h enter on-line help system

C-h i enter the information browser which provides a menu of
major topics (use TAB and ENTER keys or 2nd mouse
button to select a topic; navigation information is
provided)

C-p, C-n, C-f, C-b move up (to previous), down (to next), forward, or
backward by one line or character, respectively

C-v, M-v move forward, backward, by one screen

C-s search forward for characters (system will prompt you
for string). To continue search, type C-s again.

C-r search backward

C-d delete a character

C-k delete (kill) from cursor to end of line

C-y restore what you’ve deleted

C-x u undo last edit

C-g get out of current command operation

C-x i insert file at cursor position (system will prompt for
filename)

M-q fill paragraphs

C-@ or C-SPACEBARset the mark for the start or end of a region to select

1. If you have a key labelled META, use it; if you don’t, try the ALT key or the
ESCAPE key (if you’re running a native X window). As a last resort, the sequence
<CTRL-[> should always work as a Meta key.

10-6 Editors

C-w delete all between mark (see C-@) and cursor’s current
position (paste back with C-y)

M-w copy all between mark (see C-@) and cursor’s current
position (paste back with C-y)

C-x C-x exchange mark and cursor’s current position (since the
mark is invisible, this allows you to find it)

C-x C-s save the file

C-x C-w write to file (system will prompt for filename)

C-x C-b display buffer list

C-x o move cursor to other window (when more than one
displayed)

C-x C-c exit emacs

Note, if the serial port or terminal device you are typing on is configured for
<CTRL-S>/<CTRL-Q> flow control, you may find that <CTRL-S> (written
above as C-s) within emacs causes the terminal to stop sending characters, the
same as when used at the shell prompt. If you want to use the usual emacs key
bindings and to have C-s work properly within emacs, you’ll need to
reconfigure your line to not do flow control. Where and how you do this
depends on how you’re connected. If you’re connected via a modem, you may
need to reconfigure your modem, as well as the pseudo-terminal on your UNIX
host. The latter can be done via the command:

% stty stop undef start undef

(which sets the stop and start characters to “undefined”). You could include
this statement in your .login or .profile. The intermediate step,
between the on-site modem and the Cisco router/terminal server, has flow
control turned off by default.

Language-Specific Text Editing Environments

emacs/xemacs supports several text editing environments (called modes), each
geared to a particular language (e.g., English, Lisp, C, FORTRAN). When the
editor is started, it normally loads the file $HOME/.emacs, if present, which
contains Lisp commands for initialization. In particular, by setting up a
mapping in this file between file extensions and languages, you can configure
emacs/xemacs to come up in the appropriate mode according to the extension
of the file you specify on the invoking command line. The text you need to
include in .emacs has the syntax:

(setq auto-mode-alist (append ‘(

 (“\\.extension1$” . language1-mode)
(“\\.extension2$” . language2-mode)

 (“\\.extension3$” . language3-mode)
(“\\.extension4$” . language4-mode)

Editors 10-7

 ...

) auto-mode-alist))

10-8 Editors

For example:
(setq auto-mode-alist (append ‘(

 (“\\.asm$” . asm-mode) (“\\.s$” . asm-mode)
(“\\.awk$” . awk-mode)

 (“\\.cc$” . c++-mode) (“\\.C$” . cc-mode)
(“\\.hh$” . c++-mode)

 (“\\.c$” . c-mode) (“\\.h$” . c-mode)
(“\\.i$” . c-mode)

 (“\\.m$” . objc-mode) (“\\.csh$” . c-mode)

 (“\\.cdf$” . fortran-mode) (“\\.cin$” . fortran-mode)

 (“\\.for$” . fortran-mode) (“\\.f$” . fortran-mode)
(“\\.F$” . fortran-mode)

 (“\\.inc$” . fortran-mode) (“\\.car$” . fortran-mode)

 (“\\.cra$” . fortran-mode) (“\\.crb$” . fortran-mode)

 (“\\.tex$” . TeX-mode) (“\\.txi$” . Texinfo-mode)

 (“\\.el$” . emacs-lisp-mode) (“\\.icc$” . c++-mode)

) auto-mode-alist))

The on-line GNU EMACS manual provides more information on creating and
modifying this file.

Use with EDT-Style Keypad

emacs/xemacs can be set to have an EDT-style keypad. See the emacs and
xemacs product documentation for details; here we provide some start-up
information.

emacs (windows) and xemacsThe key bindings are in the control of the editor
emulation. When you first start up the tpu-edt
emulator (instructions follow) it will prompt you
to setup a keyboard mapping. You need a
separate mapping for each different keyboard
type you use.

emacs in non-windows mode Here you are at the mercy of your window
emulator. There are things you can do to remap
keys on most vt100 window emulators, but it is
different for each OS/emulator. There are too
many permutations to document.

To invoke the emulation, put the following text at the top of your
$HOME/.emacs file:

(tpu-edt) ;; Basic Emulation

(tpu-set-scroll-margins “10%” “15%”) ;; Set scroll margins
10% (top) and 15% (bottom).

(load “vt-control” t) ;; VT terminal controls (No complaint
if not available)

;;

Editors 10-9

;; TPU-edt treats words like EDT; here’s how to add word
separators.

;; Note that backslash (\) and double quote (“) are quoted
with ‘\’.

(tpu-add-word-separators “]\\[-_,.\”=+()’/*#:!&;$”)

To try this out without changing your .emacs file, first invoke the editor,
then press ALT-x (hold down ALT while pressing x), and type tpu-edt
followed by a carriage return.

On some platforms you may have trouble with the Gold key. The problem and
its solution are dependent on the type of terminal and keyboard you are using.

The xemacs GUI Interface

Due to the user-friendly nature of the product, we present only a few basic
commands to give you a flavor of this type of editor if you are not familiar with
it:

Open a file OPEN from the toolbar or File menu (you can also open
in another window or in a new frame); choose an
existing file from popup window

Create a new file OPEN from the toolbar or File menu; type in the new file
name

Include a file INSERT FILE from the File menu

Select text Use the mouse

Highlight special syntax in color (for use with language modes)

SYNTAX HIGHLIGHTING from Options menu.

Cut/Copy/Paste text CUT/COPY/PASTE from the toolbar or Edit menu

Search for text SEARCH from the Edit menu

Spell check SPELL from the toolbar or Edit menu.

Save the file SAVE from the File menu

Close the file DELETE BUFFER from the File menu (use the Buffer
menu to select the buffer to close)

Exit xemacs EXIT EMACS from the File menu

C-g get out of current command operation

The xemacs oo-Browser

The OO-Browser is a multi-windowed, interactive, object-oriented class
browser. It currently supports the following object-oriented languages (Eiffel,
C, C++, Objective-C, CLOS (Lisp), Java, Python and Smalltalk), one

10-10 Editors

non-object-oriented language (C), and one documentation language, (GNU
Info). On the Web you can find documentation for the oo-Browser with the
xemacs product.

Before using the browser, you must create a database of information for each
set of source code files you plan to use.

Editors 10-11

Here is a brief set of instructions for creating a database:

1) Run setup xemacs

2) Change to the directory in which you want the browser database output
to go (we’ll call it outputdir), and invoke xemacs.

3) Select OO-Browser from the TOOLS pull down menu. In the prompting
window at the bottom of the window it will say: Load/Create
OO-Browser Environment: {outputdir}/

 Enter a filename. This file is used to store the answers to the following
questions. The application will then read this file to build your browsing
environment. The file can be reused in future sessions. Here we’ll use
the filename OOBR, to create the file {outputdir}/OOBR.

4) Next it prompts for a language: Choose: 1) C++/C; 2)
Eiffel; 3) Info; 4) Java; 5) Lisp; 6) Obj-C; 7)
Python; 8) Smalltalk

 Enter the number corresponding to your choice.

5) Some error messages may rapidly scroll by. Ignore them1 and wait for
the following prompt: Please specify the "OOBR"
Environment (Hit RET to begin).

 Enter RETURN as requested.

6) Next it prompts for a list of “system” directories and then “library”
directories. You can specify each directory using an absolute or a
relative path name (relative to your current working directory). Specify
your own source code files as “system”, and any library source code
files you need as “library”. Terminate the list by entering a carriage
return on a fresh line.

7) The next prompt is: Build Environment from spec in
file, "{outputdir}/OOBR"? (y or n)

 Enter y

8) The final prompt is: Build Environment in a background
process? (y or n)

 Enter n (in order to monitor what happens)

The oo-Browser starts scanning all of the files in the directory tree underneath
the directories you specified. When it finishes, your database is made and you
are ready to start browsing.

1. A knowledgeable source suspects that these messages are the result of a bug and will go
away in a future release. She has heretofore ignored them with no ill effects.

10-12 Editors

A couple of useful keys are F and V. F displays an expanded (full) summary of
the member functions belonging to the selected class. If you enter V with the
cursor on a class name, the source file that defines the class (usually a header
file) is displayed for viewing. Enter E to display it for editing. If you enter V
with the cursor on a member function name, it displays the source code for that
member function (usually an implementation file). If there are many functions
in the same file, the browser places you at the correct line number for the
selected function.

10.3.3 NEdit

NEdit is very similar in appearance and operation to many PC text processing
applications for Windows. It is menu/mouse driven, with keyboard shortcuts
available. Some UNIX shell commands are available from within the editor.
Make sure the NEdit product is installed on your system. To set up NEdit
under UPS, include in your login script or enter:

% setup nedit

To invoke NEdit, type:

% nedit [<filename>]

Due to the user-friendly nature of the product, we present only a few basic
commands to give you a flavor of this type of editor if you are not familiar with
it:

Open a file OPEN from the File menu; choose an existing file from
popup window

Create a new file NEW from the File menu

Include a file INCLUDE from the File menu

Select text Use the mouse, or the shift and arrow keys together

Cut/Paste text CUT/PASTE from the Edit menu

Search for text FIND from the Search menu

Fill paragraph FILL PARAGRAPH from the Edit menu

Spell check SPELL from the Shell menu

Save the file SAVE from the File menu

Close the file CLOSE from the File menu (you are prompted about
saving)

Exit NEdit EXIT from the File menu

Editors 10-13

Further information is available from the man pages and a plain text document
in the distribution kit, but the on-line help in the program is complete and more
convenient. The documentation is also available on the Web in the product
documentation area.

10-14 Editors

Printing 11-1

Chapter 11: Printing

This chapter covers the standard Fermilab UNIX print utility flpr, as well as
filter programs and techniques available for formatting the output prior to
printing. flpr is the Fermi implementation of the standard UNIX lpr utility.
Most software applications supplied by the Computing Division use flpr as a
default.

Note that many X-windows applications allow you to specify in a pop-up
window the print command you want to use.

11.1 The Fermilab Print Server FNPRT

From centrally-supported UNIX machines at Fermilab, flpr print requests are
routed through the Fermilab print server FNPRT.FNAL.GOV. FNPRT
provides access to a large number of supported printers on-site.

To get a full list of printer queues supported by FNPRT, run the command
obtain printer to create the file flp.printers in your current
directory. Or check
http://fnprt.fnal.gov/www/print_queues.html.

11.2 The Print Commands

The Fermilab print utility flpr (pronounced “flipper”) implements the lpd
printing protocol, and can be used to print UNIX files to any print server using
this protocol, which includes most UNIX systems. Related commands are
flpq (to check the print queue) and flpk (to kill a submitted print job; not
supported universally). The format of each command is:

% flpr [<options>] [<file>] ...

% flpq [<options>] [<users>|<jobs>] ...

% flpk [<options>] [<users>|<jobs>] ...

11-2 Printing

The options are described in the man pages. All three programs display a list
of their options when given an argument of -\?. Only the options supported
by the lpd host (the print host) function, however.

11.2.1 The flpr Command

The following command produces the version of flpr in use, when and where it
was created, the flpr defaults in effect, and the command format:

% flpr -\? -v

To print a file, the flpr command format is:

% flpr [-q <queue>] [-h <print_host>] [-l <login_name>] <file>

-q Option

If the -q option is not specified, the queue is taken from (in order of
precedence):

1) environment variable FLPQ

2) user control file (.flprrc)

3) system control file(s)

4) data compiled into flpr

-h Option

If the -h option is not specified, the default print host is taken as
FNPRT.FNAL.GOV. For this to work, the print queue must be known to
FNPRT (most are). You can set your own default printer host with the
environment variable FLPHOST, or put an appropriate entry in your .flprrc
user control file.

-l (lowercase L) Option

Another option for the flpr command that may occasionally be useful is
-l <login-name>. This specifies the remote login name to be used in case
you want another user name associated with the print job. The default name is
the same as that on the current system.

Printing 11-3

11.2.2 Setting the Environment Variables

You can set environment variables such as FLPQUE and FLPHOST with the
setenv command for the C shell family (see section 9.5 Shell Variables and
Environment Variables):

% setenv FLPQUE <queue>

% setenv FLPHOST <host>

and for the Bourne shell family:

$ FLPQUE=<queue>; export FLPQUE

$ FLPHOST=<host>; export FLPHOST

11.3 Printer Nicknames

A useful feature of flpr is the capacity to use nicknames. A nickname specifies
the printer host computer and the queue as a pair. If you often use a printer
unknown to FNPRT, this feature may be handy for you. You would then enter
a print command in this format:

% flpr -P <nickname> <file>

The flp.printers file mentioned in section 11.1 The Fermilab Print
Server FNPRT defines many nicknames, most or all of which are associated
with the host FNPRT, and is therefore more useful as a queue reference for the
-q option. An example nickname is wh10w_lw, which is defined as:

printer wh10w_lw fnprt.fnal.gov wh10w_lw

Why are printer nicknames useful? If you’re using a printer not recognized by
the flpr defaults, you’ll need to specify both host and queue unless you use a
nickname. Also, we recommend that you use nicknames rather than queue
names in shell scripts. If a printer fails or is removed, then its associated
nickname can be redefined, and the scripts don’t need to be changed. If a
queue name is specified in a shell script, then this capacity does not exist. You
can define a nickname yourself, or if a widely-used printer is down, it may be
appropriate for your system administrator to establish a substitute printer by
changing the nickname in flp.printers.

A printer nickname does not have to be the same as the printer queue name. It
may be a short, easily remembered name, such as ps for a postscript printer or
lp for a text printer. Such personal printer nicknames can be established in
your personal flpr control file, $HOME/.flprrc.

As an example .flprrc, assume you use the FNPRT queues
b0trwqms_hp for text printing, and b0trwqms_ps for Adobe
PostPscript printing. You want to use the nicknames lp for text printing and ps

11-4 Printing

for PostScript. Further, you would like the print jobname to contain identifiers
for your login name and the file being printed. You could build a .flprrc
as follows1:

If this file exists, it will be used automatically. flpr also accesses any
system-wide defaults files, such as flp.defaults and flp.printers
stored in a system directory. The flp.defaults file contains default
values for the host, username, printer queue, protocol temporary filename
format and one or more associations between a nickname and a host and
printer queue pair.

11.4 Pre-Printing Options

a2ps and psnup, described below, are in the UPS product psutils. You may
need to run setup psutils before using them. They can be used from
the UNIX command line as well as from many applications. pr is also
available to format the pages before printing with flpr. pr is explained in the
man pages.

a2ps and psnup are described in detail in the man pages and in the Fermilab
DCD Release Note 41.0 Users Guide to UNIX Printing Utilities.

11.4.1 Convert ASCII to PostScript: a2ps

The a2ps utility converts ASCII to two-column PostScript by default, and
encloses the text in boxes with headers indicating date, time, filename and
page number. You also get a line saying “Printed by <username> from
<node>”. You can override the defaults; see the man pages.

a2ps is useful if the printer can only accept PostScript. You can use it to
produce different output formats (e.g., “2-up”, where two pages of your file are
shrunk to fit on a single sheet). It provides options to add items like line
numbers, user, file, and system information to the output. The command
syntax is:

host fnprt.fnal.gov

queue b0trwqms_ps

identifier %l$%b

printer ps fnprt.fnal.gov b0trwqms_ps

printer lp fnprt.fnal.gov b0trwqms_hp

1. The identifier in the file is equivalent to the -I option described in the flpr man
page.

Printing 11-5

% a2ps [<global options>] <files> [<positional options>]
<files>

where <global options> apply to all files being printed, and
<positional options> are applied only to the files found in the
remainder of the command line (with the exception of -H as noted in the man
page which only applies to the next file).

Here is an example where we pipe the output of a2ps to flpr (-p
indicates portrait mode):

% a2ps -p <file1> | flpr -q wh10w_lw

11.4.2 Print Multiple Pages per Sheet: psnup

The psnup utility takes a PostScript file and prints it “<n>-up”. This refers to
how many pages get printed on a single sheet. Portrait and landscape mode
alternate as <n> changes. Occasionally this procedure doesn’t work due to
problems with PostScript variance.1 The syntax of the command is:

% psnup [-p<n>] [-r] [-R] [-s<n>] <files>

where:

-p<n> the number of pages of PostScript (or spots) that
should be printed per sheet of paper. <n> is
constrained to be 2, 4, 8, 16, 32, or 64.

-r sets the first spot in lower right and progresses
horizontally to the upper left. This is handy for when
the pages have already been reversed by another
program, and you are printing on a printer that
reverses pages.

-R sets the first spot in the upper left hand corner and
progresses horizontally to the lower right. This is
for non-reversing printers.

-s<n> <n> is the number of the spot you want the first
page of output to be placed. The first spot on the
page is 0, not 1.

11.4.3 Set Duplex Mode

Duplex mode refers to printing on both sides of the paper. This is often
desirable for larger documents, and most printers support this feature.

1. psnup inserts PostScript code in front of the PostScript it is given. Because PostScript
is a programming language, this doesn’t always work. The file may be printed in its orig-
inal format, it may never be printed, or it may print fine!

11-6 Printing

PostScript Files

To print a PostScript file in duplex mode on a printer that supports this feature,
you must prepend some specific text to the file. An easy way to do this is to
maintain this text in a separate file, and concatenate it to your PostScript file
when you are ready to print it in duplex mode. The two-line text file, which
we’ll call duplexps here, must have the following contents:

To print your PostScript file in duplex mode, enter the command:

% cat duplexps <postscript_file> | flpr -q<duplex_printer>

Text Files

For text files, you need to prepend a different sequence to the file. The
technique we present here works with any PCL-based printer with a duplex
device in it (assuming no filters are in the way) . Since text files are easy to
edit, just add the following line to the top of your file1:

The trick is to get the escape character in your file! The sequence <CTRL-[>
will work for escape, but it must be preceded by a “quoting” character, which
differs from editor to editor.

For this (these) editor(s): ... enter:

vi <CTRL-V> <CTRL-[>

emacs <CTRL-Q> <CTRL-[>

NEdit Use INSERT CONTROL CHARACTER from the
EDIT menu; escape is 27 decimal. The escape
character may not echo on your screen
depending on your font.

... to insert an escape character. Then print the file in the usual manner to an
appropriate printer.

%!

statusdict begin true setduplexmode end

<ESC>&l1S<ESC>&a0G

1. After the first ampersand (&), the characters are: lower case L (l), one (1), uppercase S
(S). The character before the final G is a zero (0).

Printing 11-7

11.5 Other Print Utilities

There are two other traditional printing systems under UNIX. One of these is
lpr, upon which flpr is based. lpr requires that each printer be defined in the
local /etc/printcap file, which must be done by the system
administrator. One of flpr’s advantages is that no such definition is required
since the host name and print queue can be specified on the command line. lpr
is the default print command used by some applications, however. You can
obtain in your current directory the file printcap which contains all
printcap entries for print queues defined on FNPRT by executing the
command:

% obtain printcap

The other traditional printing system is called lp. This has its own set of files
which must be set up by system administrators and is recommended for use
only in situations where the other options are not available to you.

11-8 Printing

Email on UNIX 12-1

Chapter 12: Email on UNIX

This chapter discusses email forwarding, the IMAP mail protocol at Fermilab,
and UNIX email clients.

12.1 Getting Started

Information about email at Fermilab is collected at the web site E-mail at
Fermilab, at http://computing.fnal.gov/email/. You can read
about the Fermilab Mail Gateway Server and the IMAP distributed mail
technology implemented at Fermilab. We encourage you to use IMAP.

To get started using email, first request an IMAP server account. Go to the
Request Form for Computing Username and Primary Accounts at
http://www.fnal.gov/cd/forms/acctreq_form.html.

Once you have your IMAP account:

• Go to
http://computing.fnal.gov/email/servers/passwd.ht
ml to set your password and your mail forwarding on the Mail Gateway
Server. The incoming server should be set to
imapserver<n>.fnal.gov, where <n> is 1, 2 or 3, according to
the server on which you have your account. The outgoing server should
be set to smtp.fnal.gov.

• Go to
http://computing.fnal.gov/email/servers/imap/,
choose the server on which you have your account, and follow the
directions to reset your IMAP server password and change other IMAP
account information as you wish.

Now you have to choose an email client for reading and writing email
messages from your local machine.

If you choose a non-IMAP email client (and only in this case), you’ll need to
set your forwarding address to your account on the machine on which you run
the client. Your forwarding address will be of the form
<username>@<node>.fnal.gov or
<username>@<node.domain>.

12-2 Email on UNIX

12.2 IMAP-Supported UNIX Email Clients

12.2.1 Pine

pine (Program for Internet News and Email) is a menu-driven, non-graphic
UNIX mail system. It can be configured to be compatible with IMAP. See
http://computing.fnal.gov/email/smtp-server/unix-cli
ents.html#pine.

12.2.2 Netscape Messenger

To configure Netscape Messenger to work with IMAP, see the instructions at
http://computing.fnal.gov/email/smtp-server/unix-cli
ents.html#netscape.

12.2.3 Mozilla Mail & Newsgroups

We don’t yet have documentation on the CD email web site for configuring
Mozilla for IMAP, but it’s easy to follow the Mozilla account setup wizard.
From the Mozilla main page, select WINDOWS > MAIL & NEWSGROUPS,
select EMAIL ACCOUNT, and enter account information as prompted. In
particular, the incoming server must be set to
imapserver<n>.fnal.gov where <n> is 1, 2 or 3, and the outgoing
set to smtp.fnal.gov.

12.2.4 WebMail

The IMAP servers also support SSL-encrypted web-based access to email.
This is available at https://imapserver<n>.fnal.gov (note the s
in https!) where <n> is 1, 2, or 3, according to the IMAP server
containing your mail. See
http://computing.fnal.gov/email/servers/webmail-ssl.
html for more information.

12.3 Configuring Pine

Since pine’s functionality is well documented elsewhere on the web, this
section provides only some start-up information.

Email on UNIX 12-3

12.3.1 Multiple Mail Formats

The pine mail reader is able to read and write email messages from and to a
variety of email formats and locations. The formats include:

• native pine

• standard Unix

• mh and exmh folders

• netscape mail folders

• imapserver

There are three pine parameters that need to be set in order for pine to
recognize non-native email folders. You can make these adjustments through
the pine Setup option, but it is generally easier to do so by editing the
.pinerc configuration file.

The three parameters are:

• folder-collections This identifies all the mail formats that pine
will be required to recognize and process.

• inbox-path This sets the primary inbox corresponding to the user’s
chosen primary mail format (an inbox is a folder into which incoming
mail messages are placed)

• incoming-folders This sets secondary inboxes for the
corresponding secondary mail formats; all mail formats identified in
folder-collections must have an inbox defined here, except the
primary.

As an example, we’ll show a portion of a user’s .pinerc file with settings
for these three parameters such that:

• The user wants pine to recognize and process mail in the formats:
Fermilab imapserver1, mh, native pine, netscape, and his ISP’s
imapserver.

• The user sets his Fermilab imapserver1 account inbox as his primary
location for incoming mail; all the others are secondary.

The portion of the .pinerc file that defines these parameters is as follows
(note where the commas appear; the exclamation points begin comment text):

folder-collections="Imapserver1" {imapserver1.fnal.gov} [],

 ! imapserver1 mail folders

 "mh/exmh" #mh/[],

 ! local #mh/exmh folders

 "pine" mail/[],

 ! local native pine folders

 "Netscape" nsmail/[]

 ! local native Netscape folders

inbox-path={imapserver1.fnal.gov}inbox ! primary inbox

12-4 Email on UNIX

incoming-folders=#mh/inbox, ! mh/exmh

 mail/Inbox, ! pine

 nsmail/Inbox, ! Netscape

 {mail.mc.net}inbox ! offsite imapserver

12.3.2 Further Configuration

Go to pine’s SETUP CONFIGURATION menu. There are many options
available, and they come with on-line help. With the cursor on the option you
want, press ? to get help on it. Some options are variables which take one or
more values. To set a value for one of these variables, first type A to add,
then enter the value. Or type C to change an existing value. Other options
are in the form of a list of features that you can turn on or off individually.
Enter X to enable a feature; leave unwanted features blank. Here we provide
some recommendations (not including those discussed in section 12.3.1
Multiple Mail Formats):

default-fcc The default folder for messages you send out;
make sure it is not set to (uppercase) INBOX.
Default is sent-mail.

read-message-folder The folder in which read messages are placed.
Make sure it is set, and that it is not set to
(uppercase) INBOX.

user-domain=fnal.govThis value specifies the domain part (right-hand
side) of your return address on outgoing email,
thus setting your “reply to” address to
{username}@fnal.gov. This value is also
used as the default domain for email that you
send to a local username.

reply-always-uses-reply-to

Set this option so that pine uses the “reply to”
field, if present, when you reply to incoming
messages.

The option list is rather lengthy, so we provide some further suggestions for
you. We have found the following features to be particularly useful.
Explanations for them are in the on-line help:

auto-move-read-msgs

auto-zoom-after-select

auto-unzoom-after-apply

customized-hdrs

default-composer-hdrs

enable-aggregate-command-set

enable-alternate-editor-cmd

Email on UNIX 12-5

enable-bounce-cmd

enable-flag-command

enable-full-headers-command

enable-jump-command

enable-suspend

enable-unix-pipe-cmd

enable-expanded-view-of-addressbooks

preserve-start-stop-characters

quell-user-lookup-in-passwd-file

12.3.3 Printing in Pine

You will find it useful to set up printing from pine.

1) Go to pine’s SETUP PRINTER screen (enter S followed by P).

2) Move down to the Personally selected print command
option. Enter S to select this option.

3) Enter A to add a printer, then as prompted, enter the name of the printer
(this name is for your reference only) and the full command for the
printer. For example:

4) Printer: <printer_name>

5) Command: flpr -q<printer_name>

6) You may enter several printers. Enter S to select the printer you want
to use.

7) Exit (E) and save changes.

12.4 Non-IMAP Mail Forwarding

12.4.1 Choose a Node and Create a .forward File

If you forego the use of IMAP, you will need to choose one node, whether it’s
part of a cluster or not, for your mail activities. Once you do, forwarding mail
to that particular node requires creating a simple .forward file in your
$HOME directory on that node.

Using your preferred editor, enter the following expression as the contents of
this file:

\<username>@<node>.fnal.gov

12-6 Email on UNIX

For example, user “fred” who wants to receive mail on the FSUI02 node of the
FNALU cluster would log into FSUI02, create the file and enter as contents the
line:

\fred@fsui02.fnal.gov

This expression is an instruction to put incoming messages in this designated
node’s spool area. The initial backslash (\) is required to prevent looping.

12.4.2 Why Choose a Particular Node?

You might wonder why you need to choose a particular node in the case of a
file-sharing cluster. The reason is that incoming mail on UNIX is sent to a
non-shared area of one node; you can’t change that, you can only specify
which node you want used. From here the mail needs to be incorporated into
the mail system of your choice. If you are working on a different node from
the one receiving the incoming mail, you will be able to send mail, but you will
only see previously incorporated mail; you will not receive (and cannot
incorporate) new mail because it is inaccessible to this node.

12.4.3 Set Forwarding on Other Nodes

In principle, you should not be receiving mail on any node except your chosen
one. The email address to which your correspondants send mail should always
be <username>@fnal.gov so that your mail comes in through the
Fermilab gateway and gets forwarded as set there.

If you receive some mail on a separate UNIX node or file-sharing system
(external to the cluster containing your chosen email node), you can forward it
back to the gateway to be deposited on your chosen node. To do so, create a
.forward file in your $HOME directory on the separate node. The
contents of this file should be a single line containing the expression:

<username>@fnal.gov

This is your Fermilab gateway email address. Note that there is no initial
backslash.

12.4.4 Set your “Reply To” Address

In most mail handlers, when a user directly “replies” to a message that you
have sent (as opposed to starting a new message in the normal fashion to send
to you), the reply is sent by default to the address from which you sent the
original message, i.e., to the address in the “from” field. At Fermilab we
encourage having all messages, including replies, addressed to
<username>@fnal.gov so that they traverse the gateway. In order to

Email on UNIX 12-7

accomplish this, the outgoing message must specify a “reply to” address, and
the mail handler that receives the message should be configured to send replies
to that address in preference to the “from” address.

For pine, you need to set some configuration parameters. We describe this
under Configuring pine in section 12.3.2 Further Configuration.

12-8 Email on UNIX

Batch Processing Environment 13-1

Chapter 13: Batch Processing Environment

In this chapter we provide introductory information on LSF (Load Sharing
Facility), the standard batch processing system at Fermilab. We also list the
related software components that can be used with LSF.

You should be able to run and manipulate most batch jobs easily after reading
this chapter.

13.1 The Standard Batch System at Fermilab:
LSF

LSF, developed by Platform Computing (see their LSF web page at
http://www.platform.com/products/wm/LSF/index.asp), is
a general purpose resource management system that unites a group of UNIX
computers into a single system to make better use of the resources on a
network. The single system is referred to as a cluster. LSF collects resource
information from all nodes in the cluster, and uses it to allocate the available
host machines for execution of batch jobs.

LSF distinguishes between client machines and server machines. A job can be
submitted from either type, but run only on a server (a host). Under LSF, jobs
that are run remotely behave just like jobs run on the local host. Even jobs
with complicated terminal controls behave transparently to the user as if they
were being run locally.

LSF is fully documented by Platform, but you need authorization to access
their documentation. Platform does not want us publishing a password to their
documentation; contact the CD/CSS/CSI group at csi-group@fnal.gov to get
our username/password. Then, go to the Platform documentation page to
download it
(http://www.platform.com/services/support/docs_home.
asp),

For the purposes of this chapter, a batch job (also called simply a job) is any
UNIX executable that is submitted to the LSF batch system. Job control
information (e.g., name of executable, queue, required resources, and so on) is
passed to LSF via command line arguments supplied when submitting a job.

13-2 Batch Processing Environment

13.1.1 Job Queues

Batch jobs are submitted to LSF via job queues. LSF administrators generally
configure job queues to control host resource access according to user and
application type. A queue can be defined to use a particular subset of the hosts
in the LSF cluster; the default is to use all hosts.

Each queue represents a different job scheduling and control policy. Users
select the job queue that best fits each job. All jobs submitted to the same
queue share the same scheduling and control policy. There is a nice value
associated with each queue (see section 6.5.1 Priority), and jobs submitted to a
queue are automatically “reniced” accordingly.

13.1.2 Load Monitoring on Hosts

LSF monitors the load of each host in the batch cluster by comparing the
values of several built-in load indices against the allowable load thresholds
defined by the LSF administrator. A load index is simply a measurement of
the processing load on a batch host. On an overloaded host, batch jobs can
begin interfering with each other or with interactive jobs. Therefore, LSF
begins suspending jobs on a host when it becomes overloaded (i.e., when one
or more load indices exceed the predefined suspension threshold). LSF
resumes any suspended jobs once all the load indices read below the release
threshold.

If a job queue has been defined with a time window (measured in real time),
LSF suspends any jobs running on that queue when the current time falls
outside of the window. These jobs get released when the time window
reopens.

13.1.3 Host Selection

The resources available for processing LSF jobs on each host are defined by an
LSF administrator. Only nodes having resources that match or exceed the
resource requirements of a given job are potential hosts for that job. LSF
compares the resource requirements specified for the job against the load on
each of these nodes, and chooses the most favorable host.

If no resource requirements are specified for a job, a host of the same model
and type as the machine on which the job was submitted is chosen.

13.1.4 Job Priority

LSF schedules, suspends, and releases submitted jobs by balancing job priority
and available resources. Job priority is governed by several factors:

Batch Processing Environment 13-3

• the options and arguments specified on the command line during batch
submission

• the priority of the queue on which the job was submitted; according to
LSF’s FCFS (first come first serve) protocol

• the number of shares that a job has used, according to the FSS (Fair Share
Scheduling) protocol. A share is a portion of the resources available on
the host or hosts; queues may be defined to limit the number of shares
jobs can utilize.

When a host’s suspension threshold is reached, LSF suspends lower priority
jobs first unless the scheduling policy associated with a particular job dictates
otherwise. A suspended job can later be resumed by LSF if the host’s release
threshold is again reached (or, if the suspension was due to a time window, as
mentioned above, the job resumes when the time window reopens).

LSF does not override the UNIX scheduler.

13.2 Running Batch Jobs in LSF

Formerly, the UPS product fbatch supplied the commands that you would
enter to run and manipulate batch jobs. fbatch was a set of locally-written
shell scripts and C programs that provided a layer on top of LSF. fbatch has
been removed and discontinued.

You need to run the command setup lsf before accessing LSF
commands and man pages. When you run setup, you are prompted for your
AFS password. Make sure you are using an encrypted connection. When you
enter your password, it gets encrypted using PGP and stored in an environment
variable.

When you setup LSF, you will also be able to access the man pages for its
commands. Running man lsf returns a list of all the commands it
supports.

Several of the LSF commands are illustrated below, organized by function.
For complete information on each of the commands, see the man pages.

13.2.1 View Host Information

To see which hosts and resources are defined in your cluster, you can issue the
command:

% lshosts

13-4 Batch Processing Environment

The configuration information returned includes: host name, host type, host
model, CPU factor, number of CPUs, total memory, total swap space, whether
the host runs LSF servers or not, available resources denoted by resource
names. The host name, host type, and host model fields are truncated if too
long. The CPU factor is used to scale the CPU load value so that differences in
CPU speeds are considered by LIM1. The faster the CPU, the larger the CPU
factor.

The output is returned in this format:
HOST_NAME type model cpuf ncpus maxmem maxswp server
RESOURCES

fsgi02 SGI R4400Ch2 84.0 16 511M 2755M Yes
(irix any fsgi02)

fsui02 SUNSOL ULTRA167 93.0 4 320M 889M Yes
(sparc any sun fsui02)

fibb01 AIX I560 39.0 1 192M 400M Yes
(aix any fibb01)

fncl10 AIX I370 49.0 1 128M 1136M Yes
(aix any clubs fncl10)

fibi01 AIX I590 62.0 - - - No ()

fsgi01 SGI I4D420 30.0 - - - No
()

13.2.2 View Queue Information

The bqueues command lists the available LSF batch queues:

% bqueues

The output returned is in the following format. A dash (-) in any entry means
that the column does not apply to the row. In this example some queues have
no per-queue, per-user or per-processor job limits configured, so the MAX,
JL/U and JL/P entries are dashes. The man page describes each of the
fields.

QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP

test_queue 99 Open:Active - - - - 0 0 0 0

e831_long 16 Open:Active 1 1 - - 0 0 0 0

e831_short 14 Open:Active - 10 - - 0 0 0 0

30min 10 Open:Active - 5 - - 1 1 0 0

30min_disk 10 Open:Active - 5 - - 3 3 0 0

4hr 8 Open:Active - 5 - - 2 0 1 1

4hr_disk 8 Open:Active - 5 - - 5 2 3 0

12hr 6 Open:Active - 5 3 - 3 0 3 0

12hr_disk 6 Open:Active - 5 2 - 7 4 3 0

1day 4 Open:Active - 5 1 - 0 0 0 0

1day_disk 4 Open:Active - 5 1 - 7 0 7 0

4day 2 Open:Active - 5 0 - 33 17 12 4

1. Load Information Manager (LIM) is a daemon process that keeps track of the load indi-
ces.

Batch Processing Environment 13-5

You can submit jobs to a queue as long as its STATUS is Open. However,
jobs are not dispatched unless the queue is Active.

13.2.3 Submit a Batch Job

The bsub command is used to submit a job to the batch system. The most
common arguments used are -q (queue name), -R (resource requirements),
-o (stdout redirection), -e (stderr redirection), and -N (notify via email).

As an example, here we submit a script called myjob to the 4hr queue,
specify an IRIX host, and request notification. The stdout is redirected to
myjob.out, and the stderr to myjob.err:

% bsub -N -q 4hr -o myjob.out -e myjob.err -R "irix" myjob

Job <9776> is submitted to queue <4hr>.

where the <9776> is your LSF job number.

When your job begins, you will automatically receive a renewed AFS token on
the execution host.

13.2.4 Monitor Submitted Batch Jobs

The usage examples below use a sample job number 1022:

Display a listing of running jobs

% bjobs

If no options are supplied, the list will contain only your running jobs. To see
all running jobs, use the -u all option. Output is returned in this format:

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

 1022 aheavey PEND 30min fsui02 sleep1 Sep 10 09:56

Display the stdout and stderr of a job

% bpeek 1022

The format of the output varies according to the files.

Display history information about a job

% bhist 1022

Output is returned in the format:
Summary of time in seconds spent in various states:

JOBID USER JOB_NAME PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL

 1022 aheavey sleep1 7 0 35 0 0 0 42

13-6 Batch Processing Environment

13.2.5 Control Submitted Batch Jobs

For jobs that are in a queue awaiting execution, LSF provides commands to
move jobs within the queue, and to modify the resource requirements of the
job. The usage examples below use a sample job number 1022:

Move Job within Queue

Move job to the bottom of the queue:

% bbot 1022

Move job to the 2nd position from the top of the queue:

% btop 1022 2

The bbot and btop commands, above, move jobs within queues relative
to the user’s own jobs. You cannot move your job ahead of another user’s job
with these commands.

Change Job Parameters

Change the resource requirements of job:

% bmodify -R aix 1022

Migrate a batch job to another host:

% bmig -m newhost 1022

Suspend, Resume, or Kill a Job

Suspend (stop, but do not cancel) job:

% bstop 1022

Resume job:

% bresume 1022

Cancel job:

% bkill 1022

Batch Processing Environment 13-7

13.3 Related Software Components

This section describes other software components that can be used with the
LSF batch system.

spacall

The spacall utility (space allocator) provides scratch disk storage for a job.
spacall is invoked under LSF by submitting a job to a specially defined queue;
for example, on FNALU the *_disk queues have been configured for it.
The path to the scratch space is /tmp/$LSB_JOBID.

13-8 Batch Processing Environment

Data and Tape Handling 14-1

Chapter 14: Data and Tape Handling

In this chapter we introduce you to the principal data and tape handling
software and facilities available at Fermilab. These include:

• SAM (Sequential data Access via Meta-data)

• Enstore

• OCS (Operator Communications Software)

Since many groups and experiments have customized their data and tape
handling routines, some or all of the applications described here may not be
available or appropriate for you. Contact your spokesperson or group leader to
find out what procedures have been established for your experiment or group.

14.1 SAM (Sequential data Access via
Meta-data)

SAM (Sequential data Access via Meta-data) is a file-based data management
and data access program that provides an intermediate layer between data
processing and data storage. A single database keeps track of metadata for
every data file associated with a SAM installation. Documentation and
information about SAM as implemented for D0 RunII can be found at
http://d0db.fnal.gov/sam/.

14.2 Enstore

Enstore is the mass storage system implemented at Fermilab as the primary
data store for experiments' large data sets. It provides distributed access to data
on tape or other storage media both local to a user's machine and over
networks. It provides a generic interface so experimenters can efficiently use
mass storage systems as easily as if they were native file systems. SAM or
another data management/access program can be made to interface to Enstore.

14-2 Data and Tape Handling

Enstore is documented at
http://www.fnal.gov/docs/products/enstore/. The Enstore
online monitoring home page is http://hppc.fnal.gov/enstore/.
There are currently (as of February 2003) three productions Enstore systems
running:

• D0EN for the D0 RunII experiment

• CDFEN for the CDF RunII experiment

• STKEN for general users

14.3 OCS (Operator Communications Soft-
ware)

OCS is a package that performs and manages tape drive allocations,
operator-assisted tape mounts and tape drive use statistics. Its
logical-to-physical tape device name translation helps not only human
communication, but hides many platform-specific idiosyncrasies from users.

OCS is not a tape I/O package. It works well with such packages (e.g.,
RBIO, FMB, DAFT).

Start-up information for running and monitoring OCS tape mounts is provided,
and the OCS X interface is introduced.

OCS functions are available via three separate interfaces:

• FORTRAN/C library of subroutines

• Command line tools

• X Motif tools

The features available in each of these interfaces overlap to a great extent.
However, since the different interfaces are by their nature geared towards
different uses, the functionality is not 100% duplicated across them. The
FORTRAN/C subroutines provide the most flexibility and functionality for
users requiring multiple mount requests, the command line tools are generally
used in shell scripts, and the X interfaces are very useful for monitoring tape
drive statistics.

The X interfaces are fairly intuitive, so we give you enough information to
bring them up (section 14.3.2 The OCS X Interfaces), but we do not describe
them in detail.

The OCS functions are fully described in the OCS Reference Guide, document
number GA0012, available on the Web. The reference guide and other
documents are also available wherever OCS is installed and setup, in the
directory $OCS_DIR/doc.

Data and Tape Handling 14-3

14.3.1 OCS Basics

Monitoring Tape Mounts

During the course of your work, you may need to monitor different aspects of
the job and possibly contact the operators. OCS provides functionality to
perform these job management activities. For your convenience, we list the
appropriate command next to the function in the table below, and indicate
whether you can perform the function using one of the X interfaces. You will
need to see the OCS Reference Guide for usage information on these
commands and for the associated FORTRAN/C subroutines.

Function Command X interface

Mark a tape drive broken so that it
will not be allocated until it is
repaired

ocs_broken xocs

Log statistics as to how much the
drive was used

ocs_report
_stat

ocs_init_s
tat

Send an attention message to the
operator

ocs_messag
e

Send a request to the operator to run
a cleaning tape through a tape drive

ocs_clean_
it

Display status of tape drives in the
OCS database

ocs_tape xocs

Display pending mounts ocs_pendin
g

xocs

xtapevi
ew

Display tape drive statistics ocs_devsta
t

ocs_stats

xocs

Display tape mount log ocs_mrlog xocs

Display tape drives that may need to
be cleaned

ocs_clean_
list

xocs

14-4 Data and Tape Handling

Sample Tape Mounting Process

Here is a sample tape mounting process using the command line tools. Read
through it to see what steps are involved and what kind of response to expect
from the system at each step. Note that the OCS commands come with many
options that are not shown here.

First, display the list of available tape drives:

% ocs_tape

HOSTNAME DEVICE TYPE ALLOCATED STATUS VSN
USERNAME UID AUTH

bastet dumdlt4 DLT4000 allocated working -
root 0 n

bastet isis2 EXB-8505 unalloctd working - -
- n

bastet horus EXB-8200 unalloctd working - -
- y

Request allocation of a tape drive so no other user may access it (notice only
one device shows authorization as “yes”):

% ocs_allocate

bastet horus

Send a request to the operations staff to mount a tape on the drive you have
allocated:

% ocs_request -t horus -w -v FGMS04

ocs_request: success

Verify that the tape was mounted correctly:

% ocs_check_label -t horus -w -v FGMS04

ocs_check_label: Success

Set the tape drive characteristics according to your needs (we recommend that
you always do this; don’t assume the drive has been left in any particular state):

% ocs_setdev -t horus

Request the appropriate device file for reading and/or writing the tape
according to the characteristics you’ve set:

% ocs_devfile -t horus

/dev/rmt/tps0d3nrv

Perform your task on the loaded tape. Normally this involves running a
program that calls tape I/O routines from RBIO or another I/O package. For
simplicity in this example, we just use the UNIX dd utility to get the tape
contents (we have loaded an ANSI initialized tape with no data):

% dd if=/dev/rmt/tps0d3nrv conv=unblock cbs=80

Data and Tape Handling 14-5

VOL1FGMS04 ftt
4

HDR1

0+2 records in

0+1 records out

A useful feature to include in this example is the device statistics function. It
provides more detailed information for the end user than the X interface
implementations, which were designed more for administrative purposes.

% ocs_devstat -t horus

--

Collecting Tape Drive Statistic ------------------- Thu Oct
2 12:43:27 1997

--

Host Name = bastet

Device Name = horus

Device Filename = /dev/rmt/tps0d3

Device Type = EXB-8200

Controller = SCSI

Vendor Id = EXABYTE

Product Id = EXB-8200

Firmware Id = 268N

Serial Number = -

Number of Hours On = -1 In Motion = -1

Count/KBytes Read = 2200 Write = -1

Errors Read = 0 Write = -1

Comp Ratio Read = -1 Write = -1

Compresion = NO

Density = 8200

Media Type = 133

Block Size = 0

Block Total = 2294048

Count Origin = Exabyte_Extended_Sense

Remain Tape/KBytes = 2290569

SCSI Sense Code = 0

SCSI ASCQ = 0

Track Retry = -1

Stop/Start Count = -1

SCSI Test Unit Ready = 0

SCSI Sense Key = NO_SENSE

--

Tape Not Present: N | Write Prot: N | Clean Bit: N |
Drive Cleaned: N

14-6 Data and Tape Handling

Beginning of Tape: N | At File Mark: N | End of Media: N |
End of Tape: N

Ready Bit: Y | Power Fail: N | SCSI ILI Bit: N |

--

Dismount the tape (i.e. rewind and unload it):

% ocs_dismount -t horus

ocs_dismount: Success

Finally, deallocate the tape drive so that someone else can use it:

% ocs_deallocate -t horus

ocs_deallocate: Deallocated :horus

Tape Mounts with Batch Jobs

Most of the time, users run tape mounts in conjunction with batch jobs. We
strongly recommend that you include the tape mount allocation, mount
request, dismount and deallocation within your batch job. If you don’t, you
risk preventing others from using the tape drive while your job is waiting to
run and after it has finished. A -q option is provided for the
ocs_allocate command to allow you to queue for tape drive allocation so
that your job won’t fail if a drive isn’t immediately available when it starts to
run.

Here is a sample batch job script that incorporates these recommendations:
 #!/bin/csh

 setup ocs

 set td=`ocs_allocate -q -h localhost -d exabyte_850x
| cut -f2 -d” “ -`

 if ($status != 0) then

 echo ocs_allocate failed with message: $td

 exit 1

 endif

 set drive=`echo $td | cut -f2 -d” “ -`

 ocs_request -t $drive -v fr3147 -r

 if ($status != 0) then

 echo ocs_request failed

 ocs_deallocate -t $drive

 exit 1

 endif

 set dfile=`ocs_devfile -t $drive`

 if ($status != 0) then

 echo ocs_devfile failed with message: $dfile

 ocs_dismount -t $drive

 ocs_deallocate -t $drive

 exit 1

Data and Tape Handling 14-7

 endif

 ocs_setdev -t $drive -v -d 8500

 if ($status != 0) then

 echo ocs_setdev failed

 ocs_dismount -t $drive

 ocs_deallocate -t $drive

 exit 1

 endif

 setenv MY_DEVFILE_VAR $dfile

 e831job.run

 ocs_dismount -t $drive

 ocs_deallocate -t $drive

 exit 0

14.3.2 The OCS X Interfaces

Remember that your DISPLAY environment variable needs to be set properly for
X windows applications (see section 9.6 Some Important Variables).

xocs

xocs is an X interface that you may find useful for viewing tape statistics and
history. It allows you to perform a subset of the functions available through
text commands. After setting up OCS, enter xocs at the command line.
You’ll see the following screen (shown for version v3.0):

14-8 Data and Tape Handling

The menu options under VIEW and ACTION include most of the features you
will need.

xtapeview

Another X interface to OCS which allows you to view pending mount requests
is xtapeview. As a user, you are not permitted to respond to mount requests,
only view them. Invoke this interface with the command xtapeview. A
window will appear from which you can choose a node. Click on the node you
want, then you’ll see a window like the one below which shows the drives
associated with that node, and any pending mounts.

If you have a color screen, the banner at the top is blue when no mounts are
pending, and red if one or more are. The status button (to the left of the drive
name) will be red if a mount is pending on that drive. If you don’t have a color
screen, there are gray-tone representations of blue and red. See
$OCS_DIR/doc/xtape.ps (recall that $OCS_DIR is defined during setup)
for a full description of this application, and to see how to customize the color
scheme.

14.3.3 Using Provided Examples to Get Started

Examples are provided in the $OCS_DIR directory (defined during setup).
You can look at $OCS_DIR/doc/viewgraphs.ps for more
single-command examples and their expected output.

The directory $OCS_DIR/examples provides sample programs for
FORTRAN, C and Bourne shell script which are intended to help you
understand how OCS works. The executables are named ocs_ctest,
ocs_ftest, and ocs_btest for C, FORTRAN and Bourne shell,
respectively. Each program carries almost identical functionality. You may
want to use the source of these programs (ocs_ctest.c, ocs_ftest.fs
and ocs_btest.sh) as an aid in developing your own programs. The
$OCS_DIR/examples/README file explains how to use the examples.

Data and Tape Handling 14-9

These example programs can actually send a mount request to operations
staff: please keep this in mind if you experiment with OCS on Fermilab
Computing Division systems such as FNALU.

14-10 Data and Tape Handling

Software Development 15-1

Chapter 15: Software Development

The various experiments and projects at Fermilab have their own environments
for code management and development, in most cases. Check with the
software managers in your experiment or group to find out what tools you’re
expected to use, what standards you’re supposed to follow, and so on.

This chapter gives an introduction to UNIX software development tools in
common use at Fermilab, providing information on:

• Supported languages

• Compiling and linking in C, C++ and FORTRAN

• Debugging

We do not include a discussion of general programming here, but rather,
aspects of software development particular to UNIX. You will need to
reference the man pages and the vendors’ manuals for more system-specific
details.

Useful documents relating to FORTRAN, C, and C++ programming can be
found under Software Development on the UNIX Resources Web page.

Many software development subjects of interest to Fermilab users are beyond
the scope of this manual. Among them are:

• Object Oriented programming techniques including NextStep

• CASE tools

• Neural Network methods

• Lattice Gauge techniques used in ACP-MAPS, CANOPY, et.al.

• Data Mining methods available in the CAP facility.

This chapter was initially written in 1996. We checked the contents (2003)
to make sure they are still valid, and have updated the existing information
as necessary, in particular, including Linux specifics. However, we have not
added information such that the chapter reflects the state of software
development in 2003. We are keeping this chapter in UNIX at Fermilab
because it is valid if not current, and it may be helpful to some users.

15-2 Software Development

• Many excellent commercial tools for building Graphics User Interfaces,
debugging, migrating and analyzing performance of user code, building
Database interfaces, etc.

15.1 Overview of Programming Languages
and Tools

This is a short overview of some common programming languages. Our aim
here is to give you a general idea of what tools are available, and how they can
be used. The list is ordered from low to high level, and indicates common
uses:

Assembler not used at Fermilab

C system services, user interface, general utilities

FORTRAN FORmula TRANslation (physics calculations)

C++ object oriented general programming

Perl interpreter, general purpose

Python object-oriented and/or general purpose interpreted
scripting language

Tk interpreter, GUI interfaces

Assembler

Traditionally, assembler has been needed for a couple of reasons:

• Access to system services and hardware

• Tuning program efficiency

Assembler programming is not generally necessary or desirable on the RISC
based UNIX systems presently in use. RISC system performance is so heavily
dependent on pipelining and various caches that it is extremely difficult, if not
impossible, for an individual to write more efficient assembler code than is
generated by the higher level language compilers. The C language provides all
the hardware access and system service capabilities traditionally provided by
Assembler.

C

As noted above, C has filled the programming niche traditionally occupied by
Assembly language. In addition to its normal use as a high-level programming
language, C can act as a universally portable Assembler.

Software Development 15-3

Because the C language was created, has evolved, and has become
standardized hand-in-hand with the UNIX operating system, it is the language
of choice for applications involving system services and user interfaces. Using
C is discussed in several of the following sections.

Now that an ANSI C standard exists and is widely implemented, portability of
C code is much improved. ANSI C compilers are the default on most Fermilab
systems. Likewise, adoption and availability of POSIX standards for operating
system services has greatly improved program portability.

An excellent reference book for C programming is The C Programming
Language by Kernighan and Ritchie published by Prentice-Hall.

FORTRAN

FORTRAN remains the most effective language for mathematical calculations.
This is due partly to decades of research which has produced highly efficient
optimizing compilers, and partly to the millions of lines of tested, portable
code already in use.

C++

C++ adds object oriented programming constructs to the C language. At the
risk of oversimplifying, it seems that C++ is substantially harder to learn and to
use for writing new programs, but the resulting programs are much better
structured, more maintainable, and more shareable than traditional C or
FORTRAN programs.

An additional advantage of C++ is the availability of class1 libraries. A
Standard Template Library will come with most compilers soon. This library
will contain many useful low level classes for such things as strings and
streams I/O. Also, some vendors include other commercial class libraries as
added value to their compilers. In addition to the vendor-supplied versions,
C++ is available as a part of Gnu C. This has increased its popularity.

The C++ language standard is (still!) in the process of adoption by the ANSI
and ISO standards committees. Since the C++ standard has not been finalized
(although it changed significantly in December 1996), there are at this time
(November 1997) cross-platform porting issues. None of our major vendors
(SGI, IBM, GNU) are yet providing a draft-standard-compliant compiling and
runtime toolkit. The safest bet for generating portable C++ code is to avoid
using newer features such as exceptions and templates, which may be
implemented differently (or not at all) by the various C++ compiler vendors, at
least until the vendors catch up with the standard. As an alternative, use the
g++ command to run the Gnu integrated C/C++ compiler on all platforms.
Using the g++ command instead of gcc gives you appropriate C++
linking.

1. A class is similar to a structure definition in C.

15-4 Software Development

For documentation, you may refer to:

• the CC (upper case), gcc and g++ command man pages

• The C++ Programming Language, Addison-Wesley, by Bjarne
Stroustrup

Perl

perl is installed at Fermilab as part of the shells product. The man page for
perl gives a good brief description:

perl is an interpreted language optimized for scanning arbitrary text files,
extracting information from those text files, and printing reports based on
that information. It’s also a good language for many system management
tasks. The language is intended to be practical (easy to use, efficient,
complete) rather than beautiful (tiny, elegant, minimal).

There is an excellent text published by O’Reilly & Associates, Inc. on perl.

Python

Python is an interpreted, interactive, object-oriented programming language
often compared to Tcl, Perl, Scheme and Java. Python combines remarkable
power with very clear syntax. It has modules, classes, exceptions, very high
level dynamic data types, and dynamic typing. There are interfaces to many
system calls and libraries, as well as to various windowing systems (e.g., X11,
Motif, Tk, Mac, MFC, STDWIN). New built-in modules are easily written in
C or C++. Python is also usable as an extension language for applications that
require a programmable interface.

An on-line document for Python is available in the CD documentation
database.

Tk

Tk is an X11 toolkit that provides the Motif look and feel, and is easy to use
for building graphical interfaces largely because it is built on an interpreted
language. It can be used with a variety of languages including Tcl (Tk used to
be solely implemented using Tcl), Perl, and Python.

The best reference for Tk is the book Tcl and the Tk Toolkit1, by John K.
Ousterhout, published by Addison-Wesley. The README file under the tk
directory in $TK_DIR (created during setup) points to a draft of this book.
Also see the man pages for information on these languages.

1. Some publishers’ catalogues use an ampersand (&) rather than the word “and”; check
both in database searches.

Software Development 15-5

Other Languages and Language-Related Tools

Other tools exist that are commonly used as languages in the appropriate
context. These include, for example, the various UNIX shells (as discussed in
section 5.4 Shell Scripts), and awk, sed, yacc, and lex, for which O’Reilly &
Associates, Inc. provides excellent texts.

There are many other languages which are not widely supported, are supported
on a per-project basis, or are not in general use at Fermilab. Among these are
Java, Pascal, Modula-2, Lisp, Forth, and Bliss. We do not discuss them in this
document.

15.2 Introduction to C and FORTRAN on
UNIX

15.2.1 The C Compiler: cc

cc (lower case) is the vendor-supplied C compiler command on all
Fermilab-supported UNIX systems (except LINUX, where it is gcc). ANSI
C compilers are the default on most Fermilab systems. To compile one or
more C source files (<filename>.c), you run the cc utility. cc
automatically invokes the link editor ld unless the option -c, which explicitly
suppresses linking, is used.

15.2.2 The FORTRAN Compiler: f77

All the Fermilab supported UNIX systems have good FORTRAN 77
compilers, which provide some minimal extensions. These compilers also
recognize most DEC-supported VAX-FORTRAN extensions.

f77 is the FORTRAN compiler command on all Fermilab-supported UNIX
systems (on LINUX, f77 actually runs g77). The f77 command controls
both compilation and linking functions automatically using appropriate
FORTRAN runtime libraries. f77 can produce object modules, partially linked
objects, or executable programs, as appropriate. The option -c explicitly
suppresses linking.

15-6 Software Development

15.2.3 C and FORTRAN Compiling Basics

UNIX compilers, including f77 and cc, generally use both filename extensions
and the file content to determine how to handle the files listed on the command
line. The commonly used extensions are:

For C

c C source, e.g., myfile.c

For FORTRAN

f FORTRAN source, e.g., myfile.f

For both

o object file, e.g., myfile.o

a archive library, e.g., mylib.a

(none) executable image, e.g., myfile

For historical reasons the UNIX linkers produce by default an executable
named a.out; the option -o <filename> is available to override this
default.

We list here some basic compiling and linking examples. In these examples,
we use a source file named foo.c, where c is the standard extension for C.
In all instances shown here c can be directly replaced by f, and cc by
f77, for FORTRAN.

To produce the foo.o object module, enter the command:

% cc -c foo.c

To produce the foo executable from source, enter the command:

% cc -o foo foo.c

To produce the foo executable from source + object file, enter the command:

% cc -o foo foo.c myobj.o

To produce the foo executable from source + library, enter the command:

% cc -o foo foo.c $CERN_DIR/lib/libmathlib.a

To produce the foo executable from source + X11/Motif (standard system
libraries), enter the command:

% cc -o foo foo.c -lXm -lXt -lX11

The options used with the cc and f77 commands are discussed in later
sections.

Software Development 15-7

15.2.4 Linking Order

Most UNIX linkers process source, object and library files in the order that
they occur on the command line. Backward library references, from a file to
an earlier library, will not be satisfied. It may be necessary to list a library
more than once for successful linking.

15.2.5 Displaying Active Options

You may wish to know which options are active for a given compilation, in
order to verify that the defaults are what you expect. Each platform seems to
provide this information somewhat differently:

15.2.6 Option Passing

At each stage of compilation, any unrecognized command line options are
passed on to the next stage. Options that could be valid for more than one
stage can be explicitly passed to a particular stage. To direct an option to a
specific phase of compilation or linking, use the option -W (for IRIX) or
-Qoption (for SunOS). The phase is identified by the letter immediately
following the -W. Thus, for example, -Wl,-m tells f77 or cc to pass the
option string -m to the l (link) phase. The f77 command line might read:

% f77 -Wl,-m foo.f for IRIX, and

% f77 -Qoption ld -m foo.f

for SunOS (where ld is the loader program)

15.3 Introduction to C++ on UNIX

The bigger experiments have a large infrastructure around their C++ code
development. Users should refer to their experiment-specific websites for
development information, tutorials, and so on.

Platform Option Result

Linux -v Options and other details, to stdout

IRIX -v Options and other details, to stdout

SunOS -’#’ Options and other details, to stdout

15-8 Software Development

CC (upper case), g++ and gcc are all C++ compiler commands on the
Fermilab-supported UNIX systems that provide C++ (see section 15.1
Overview of Programming Languages and Tools for a brief discussion). Just
as C++ is a superset of C, the C++ compilers are very similar to C compilers in
that their options are usually a superset of C compiler options. The basic
compiling information about C in section 15.2.3 C and FORTRAN Compiling
Basics is also applicable to C++, with the following exceptions1:

• Source filename extension conventions are compiler-dependent. Check
the man pages for CC (upper case) to determine the extensions used on
your system. Extensions include:

C (upper case)

c (lower case)

cxx

cpp

cc

c++

hh c++ header file

chh c++ header file

icc c++ included source file (usually inline function
definitions).

• The C++ compiler is invoked with CC (upper-case), g++ or gcc

• There are additional compiler options specific to C++; see the man pages.

The C++ compiler may not yet be installed on your Fermilab UNIX system.

15.4 C, C++ and FORTRAN Compiler
Options

The default compiler options will produce a usable program on any of the
supported platforms, however they may not be optimal for many situations.
Several additional options are discussed in this section.

A caveat: One very annoying “feature” of the f77 and cc commands is that
some of the options must be specified with whitespace (at least one blank
character) between the option identifier and the option value, others without
whitespace and still others with or without, according to the user’s choice. For

1. This doesn’t apply to Gnu C++. The compiler command for both Gnu C and Gnu C++
is gcc, and the available Gnu compiler options are different from the vendor compiler
options.

Software Development 15-9

instance, on IRIX systems, there must be whitespace between -o and the
name of the executable file but there must not be any whitespace between -l
and the library file name.

If compilers are upgraded it is possible that some of these options could
change. For full details on all the options, see the man pages and the vendor
compiler documentation.

15.4.1 Commonly-Used Options

These options are valid for C, C++ and Fortran:

-c suppress linking, produce object file *.o. The linker is
called as part of the compilation process by default.

-L <directory> add <directory> to the default linker search list;
not needed for user libraries. The -L option adds
directories to the linker’s default search path. -L
directories are searched ahead of system library areas.
A user library could accidentally match the name of an
obscure system library, with startling results.

-l<file> search library lib<file>.a, from the default areas
(the lib gets prefixed and the .a appended
automatically)

With user-written libraries, specify the libraries on the command line with their
true file names and a full path, without using the -L and -l options.

-o <file> (lower case o) produce executable program <file>
rather than a.out

-O<n> (upper case O) optimize at level <n> where <n> is
0, 1, 2, 3, or 4. The meanings of the different
optimization levels vary from system to system. See the
man pages for details.

-w suppress informational and non-fatal compiler warnings

-P (upper case P) run cpp (C preprocessor) only to
produce *.i source listing

-p (lower case p) enable profiling (used with the prof
profiler); see the man pages for details

-gp enable profiling (used with the gprof profiler); see the
man pages for details

Other commonly-used C and C++ compiler options are:

-I <directory_name>extend include path

-D set value of preprocessor macro

15-10 Software Development

Other commonly-used FORTRAN compiler options are:

-u IMPLICIT NONE

-C (upper case C) check runtime subscript range

15.4.2 Recommended Options for General Use

As mentioned earlier, the default options may not be optimal for a number of
very common situations, namely for debugging, moving binary code between
non-identical machines, or tuning for best performance. Even for general
usage, some non-default options have proven helpful in avoiding internal
compiler limits and providing better compatibility for migrated code.

This list shows options by platform which apply to all situations, and which we
recommend for general use. They can be used in addition to other options you
might choose based on your specific needs. As stated above, if compilers are
upgraded it is possible that some of these options could change, so you should
always consult the man pages.

IRIX -trapuv -lfpe

SunOS -xl -fnonstd

Linux

Discussion of General Options

-trapuv (IRIX) set uninitialized variables to NaN, to help catch
nonportable code and latent bugs at runtime.

-lfpe (IRIX) use the Floating Point Exception library, to
report or core dump on errors. Without -lfpe, errors
produce NaN values silently. Must be combined with
the TRAP_FPE environment variable, or calls to
handle_fpes, to be effective. TRAP_FPE must be set
to the value:

OVERFL=ABORT;DIVZERO=ABORT;INVALID=AB
ORT

See section 9.5 Shell Variables and Environment
Variables for setting environment variables.

-xl (SunOS) Extended Language, for Fermilab-required
extensions (see section 15.2.2)

-fnonstd (SunOS) trap floating point errors.

Software Development 15-11

15.4.3 Debugging Option

-g include full symbol table for debugger. This option
interacts with the optimizer differently on each
platform, so we provide some usage notes:

IRIX -g forces optimization off; use -g3 to permit
optimization

SunOS you should use -O1 (upper case letter o, and
number 1) with -g

15.4.4 ABI Options Under IRIX 6

Under IRIX 6, there are three Application Binary Interface (ABI) options
available. The selected option specifies at compile time which subset of the
processor chip’s capabilities is to be used. In previous releases of IRIX, and in
all releases of the other supported UNIX flavors (as of this writing), the user is
not given a choice of ABI. Under IRIX 6, choosing an ABI is generally
necessary if you’re doing mixed-language programming or using any libraries
other than those supplied by the vendor. The available ABIs and their
associated command line options are:

O32 (-32) conforms to the ABI used with all prior IRIX releases

N64 (-64) puts the processor into full 64-bit mode

N32 (-n32) leaves the processor in 32-bit mode but takes advantage
of a number of newer features and generally produces
more efficient code on the newer processors

This topic is discussed in the Web page IRIX 6 Application Binary Interfaces,
available from the CD home page; follow the Computational Physics link and
look under Cern Library at Fermilab.

15.4.5 Speed Optimization Options

Note that on most platforms a combination of options is required for best
optimization. Recall that these options may be used in addition to general
recommended and other options. The -O’s here are all upper case letter o’s.

IRIX -O3 -mips2

SunOS -O3 -cg92 -libmil

15-12 Software Development

Discussion of Speed Optimization Options

15.4.6 Load Map Option

The load map option is actually a linker option. On IRIX this requires passing
to the link phase the option that controls production of a load map.

15.4.7 Special FORTRAN Compiler Options

Source Code Listing Option

Each platform has an option that produces a source code listing. The file
extensions for these listings are platform-dependent.

Platform Options Comment

IRI
X

-mips
2

Use full R4000 instruction set. This is important
on R4000 and later systems.

Sun
Os

-cg92

-libm
il

SuperSPARC V8 instruction set Sparcstation 2
and later. See the man fpversion document.

Hardware-specific inline math

Platform Option Output

IRIX -Wl,-m stdout (SysV style list of
input/output)

IRIX -Wl,-M stdout (BSD style
primitive map)

SunOS -m stdout

Platform Option Listing Extension

IRIX -listing L

SunOS -Xlist lst

Software Development 15-13

Saving Local Variables

The FORTRAN 77 standard allows subprogram local variables to become
undefined between calls, unless saved with a SAVE statement. Many UNIX
f77 compilers require the SAVE statements for retained local variables.
SAVE’d variables are usually called static, and unSAVE’d variables are called
automatic. For programs not yet properly equipped with SAVE statements, f77
command line options are available as follows:

C Preprocessor

The C preprocessor (cpp), a macro processor, is used in f77 for conditional
compilation, macro expansion and source inclusion. If you plan to run cpp,
remember to double any backslash characters (\\) in your code to prevent
their misinterpretation as cpp escapes. The option shown in parentheses is the
default option for the corresponding platform:

IRIX (-cpp) -nocpp

SunOS any input file name *.F is automatically preprocessed
by cpp

See the man pages for cpp syntax and usage information.

Extend Search Path for INCLUDE

Use the f77 command line option -I <path> to extend the search path for
the INCLUDE statement on IRIX (not supported on SunOS), where <path>
is the path to the directory where the include files are found.

Internal Compiler Limits

You may need to set one of these if you are compiling a very large single
source file.

IRIX -Olimit 1500

Allows somewhat larger routines to be optimized.

Platform Static Option Automatic Option

IRIX -static -automatic
(default)

SunOS (default) -stackvar

15-14 Software Development

15.5 FORTRAN Programming

There is some additional information about using FORTRAN in the UNIX
environment that you will find useful to know.

15.5.1 External Reference and Entry Point Names

In order to avoid conflicts with the C runtime library when FORTRAN and C
programs are included in a single program, most UNIX f77 compilers
internally append an underscore to FORTRAN external references and entry
point names. At Fermilab we have set up all f77 compilers to do this by
default.

15.5.2 Separate Compilation of FORTRAN Subpro-
grams: fsplit

By default, most f77 compilers pre-link all the source code being compiled,
even when you specify the -c option. If you compile a library with a single
f77 statement, it will usually contain a single module, and be linked as a
whole.

The fsplit utility identifies and extracts subprograms from the original
FORTRAN source file into individual files in the current directory. These files
can then be compiled separately so that they retain their identity when
assembled into a library.

The names of the extracted individual files are taken from their corresponding
subprogram names. On some systems fsplit will overwrite any pre-existing
file, including the original source file, whose name matches any of the
subprogram names.

See the man pages for more information on fsplit.

Linux users who want fsplit can find it at:
http://rpmfind.net/linux/falsehope/home/pierre/fspli
t/.

15.5.3 Loading Block Data Modules

Many UNIX f77 compilers enforce the standard restriction that variables in
COMMON must be initialized only in BLOCKDATA subprograms.

To ensure the loading of BLOCKDATA subprograms from libraries, declare
the BLOCKDATA program name as EXTERNAL in some important module
which you know will be loaded.

Software Development 15-15

15.5.4 Program Control

Command Line Arguments

A FORTRAN program can easily evaluate arguments included on the
command line that runs the program. A couple of examples follow.

• The IARGC function returns the number of command line arguments:

 N = IARGC () Sets N to the number of command line
arguments

• The GETARG subprogram returns the value of a specified argument:

 CALL GETARG(I , STR)Puts the I’th argument into string STR

Environment Variables

The GETENV subprogram provides the values of environment variables. For
example, to copy the value of variable MY_OUT into string OUTFILE,
include in your source file:

CALL GETENV ('MY_OUT' , OUTFILE)

Printing

The usual FORTRAN carriage control characters placed in the first column of
formatted output files are not interpreted by most UNIX text handling utilities.
Use the UNIX asa utility to convert such FORTRAN output files to an
equivalent standard ASCII text form. asa handles blanks, 0, 1 and + in column
1, removing any other characters. See the man pages for asa for details.

15.5.5 Future FORTRAN Enhancements

FORTRAN 90

The FORTRAN 90 standard includes FORTRAN 77 as a subset, and makes
standard many of the extensions in common use. FORTRAN 90 is not yet
commonly installed at Fermilab, and in fact we recommend that you avoid
using FORTRAN 90 extensions until it is widely available. This document is
written for f77 users.

15.6 Obsolete Programming Features

You may encounter these features in older code.

15-16 Software Development

Calling BLOCKDATA

Some systems (VS-FORTRAN) required an explicit call to each BLOCKDATA
routine if you wished to force loading of that routine from a library. This is not
necessary on any supported UNIX system.

BUFIO

The Fermilab bufio product for accessing raw variable length records on tape
and disk is no longer supported. Improved capabilities are being supported in
RBIO and DAFT.

RANLIB (SunOS/4)

The RANLIB utility added necessary library symbol tables under SunOS/4.
This is done automatically under SunOS 5.

ar -s Option (ULTRIX)

The ar -s option added necessary library symbol tables under Digital’s
ULTRIX1 and some earlier operating systems. This is done automatically
under all Fermilab supported systems.

15.7 C and FORTRAN I/O

This section mainly applies to FORTRAN. For C, all you need to know is that
the RBIO and DAFT libraries mentioned below are available.

Recall that file names in UNIX are case sensitive. It is customary to use
lower case for normal files, reserving upper case names like README for
documentation and control files.

Note that you cannot use the shell metacharacter tilde (~) to specify a home
directory within a C or FORTRAN program; ~ is valid only on a UNIX shell
command line (for all shells but sh). logdir can be used within programs
for this purpose (see section 7.1.2 The Home Directory).

1. ULTRIX has been superseded by Digital UNIX which is no longer supported at Fermi-
lab.

Software Development 15-17

15.7.1 Records

The UNIX operating system treats a disk file as a sequence of bytes.
Interpretation of data as records is entirely up to individual applications. The
FORTRAN I/O libraries provide the necessary record handling for FORTRAN
programs. READ statements return only the content of the records, and not the
control words mentioned below.

Formatted records are terminated by a new-line character <CTRL-L> (lower
case L), consistent with other UNIX text handling programs.

Unformatted records are both preceded and followed by a 32 bit integer
containing an exclusive byte count.

15.7.2 Tapes

Tapes of course have real physical records, and must be handled differently
than disk files. A tape file is sometimes called ‘character special’ to indicate
that it is not accessed on a character-by-character basis. Tape handling is
covered in Chapter 14: Data and Tape Handling.

15.7.3 Standard Input and Output

In conformance with the FORTRAN standard, READs and WRITEs to unit *
are directed to stdin and stdout. You can READ and WRITE to units
5, 6, and 0 without an OPEN. They are preconnected to stdin, stdout,
and stderr, respectively. If you OPEN and write to any other unit number
without specifying a file name, a default name of fort.# will be used.

15.8 Performance Tuning for C and FOR-
TRAN

15.8.1 Optimization

Using the compiler -O (upper case) options can improve program execution
speed by factors of 3 or more, depending on the application, over unoptimized
code. Note that your libraries must also be compiled at the same level in order
for this to be effective.

Beware that there are some optimizer bugs. You should always do a limited
run initially with and without optimizer options, and check your answers.

15-18 Software Development

For production running, use the appropriate hardware-specific optimizations
for the systems running the code. These options typically tune for cache sizes,
instruction sets, and other internal hardware features, resulting in sizeable
speed gains. On some systems this produces an executable that will run only
on the targeted architecture.

It is common practice to retain debugger symbol tables in production
programs, with only a small speed penalty. You may have to exercise care that
the -g option does not also disable optimization of such production
programs. Under IRIX, you must use -g3 to get both optimization and
symbol tables.

See the suggested speed optimization options, and vendor documents for
details.

Floating Point Errors

You can obtain substantial speed increases on some systems by disabling the
detection and trapping of floating point errors such as overflow, division by
zero, and invalid values.

On the systems with the biggest gains, this practice can produce apparently
normal, but incorrect, results. For example, 1000./0. can produce the result
1000. It is hardly necessary to point out that this sort of thing can produce
surprising physics results! For this reason our recommended options for
general use are set to at least detect and report floating point errors.

Qualifiers which force precise trapping of floating point errors are generally
only used when tracking down known problems, as they can impose a large
performance penalty.

15.8.2 Word Length

It may be tempting to use arrays of short words to ‘save memory’. On previous
generations of computers this could also speed execution. On RISC systems
there is a big performance penalty for this practice.

The current generation of RISC processors are optimized for 32 and 64 bit
operations. Operations on 8 bit or 16 bit words are performed several times
more slowly. The processor must extract the necessary data into a longer
word, perform the operation, and mask the result back into the original
location.

Alignment of variables is important for the same reason. A misaligned 32 bit
word requires even more shifting and masking than a 16 bit word, with an even
greater performance penalty. If you must combine different length variables in
a data structure such as a COMMON, place longer words earlier in the data
structure.

Software Development 15-19

15.8.3 Feedback

The speed of a program can be limited as much by memory access as by
processor speed. Effective use of memory cache is critical to getting good
performance.

Cache usage can depend on the details of the linking process. Arbitrary
changes in the ordering of modules in the executable can result in nearly 20%
differences in execution speed, for typical physics code. Small changes like
switching between static and shared libraries, or modifying a single subroutine
call in your code, can result in substantial changes in linking order and hence in
performance.

For this reason, some vendors provide mechanisms for setting optimized
module ordering in the executable, based on data from a trial run of the
application.

15.8.4 Inlining

Many compilers provide options for replacing calls to external modules with
equivalent inline code, to permit better optimization and reduce subroutine call
overheads.

Physics code does not generally benefit measurably from such inlining.
Inlining within a library makes the inlined modules nonreplaceable at link
time, leading to confusing results and difficult debugging. In our
recommended speed optimization options we stop short of the levels that
introduce inlining.

15.9 C and FORTRAN Mixed Programming

It is possible, with a little care, to combine C and FORTRAN modules in the
same program. Some of the issues that need attention include:

• variable types

• array indexing

• external names

• arguments

• commons

• I/O

• linking

For newly written C programs, you may wish to use the cfortran.h
header file available in the cern product.

15-20 Software Development

If you’re programming under IRIX 6, you will need to choose an ABI. Refer
to section 15.4.4 ABI Options Under IRIX 6.

We give here a summary of the techniques used on the Fermilab UNIX
systems.

15.9.1 Variable Types

Generally, these variable types are equivalent:

C strings are zero-terminated, and have no intrinsic length. FORTRAN
character variable lengths are given by an internal descriptor. FORTRAN
character variables passed to C routines should be copied and zero-terminated
before they are used.

The internal representation of FORTRAN LOGICAL variables is usually
non-0/0 for .TRUE./.FALSE. respectively, but it is best not to count on this.

15.9.2 Array Indexing

By default C starts indexes at 0 and FORTRAN starts them at 1. C and
FORTRAN multiple index ordering is reversed. FORTRAN substring
selection appears as the first C string index. See the following equivalence
table:

FORTRAN C

INTEGER*
1

char

INTEGER*
2

short

INTEGER*
4

int

REAL float

REAL*8 double

LOGICAL (unavailable
)

FORTRAN C

intv(j) intv[j-1]

Software Development 15-21

15.9.3 External Names

By default on Fermilab UNIX systems, the f77 compiler modifies FORTRAN
subprogram and other external names. It forces each name to lower case, and
appends an underscore. Thus FORTRAN label SUBPROG would become C
label subprog_.

15.9.4 Arguments

FORTRAN subprogram arguments are always passed as addresses (C
pointers). C programs can specify arguments as either pointers or values.
FORTRAN CHARACTER arguments are passed as pointers, followed by a set
of additional values (not pointers) at the end of the argument list, giving the
length of each CHARACTER argument.

C routines can always call FORTRAN routines, with due attention being given
to arguments. FORTRAN routines cannot call arbitrary C routines.

15.9.5 Commons

FORTRAN COMMON’s are accessible in C as extern structs, with the same
name mapping as is used for entry points.

intv(j,k) intv[k-1][
j-1]

char(j)(k:
k)

char[k-1][
j-1]

FORTRAN C

COMMON
/FOO/ I

extern struct { int i ;
} foo_ ;

K = I k = foo.i ;

FORTRAN C

15-22 Software Development

It is best to keep your FORTRAN COMMON variables aligned on natural
boundaries1, in order to avoid potential padding words which may be inserted
differently by various FORTRAN and C compilers. You get natural alignment
easily by putting longer variables before shorter variables in the COMMON.

15.9.6 I/O

Mixed C/FORTRAN I/O to the same file is not advisable. Mixed
C/FORTRAN I/O to stdout, where stdout is the terminal, will usually
work reasonably well, making debugging easier.

15.9.7 Linking

The easiest and safest way to link C/FORTRAN programs is to use the f77
command, which automatically includes both C and FORTRAN run time
libraries. If you insist on linking with the cc or ld commands, remember
to add the options:

-lF77 -lI77 -lm

15.10 Executing a Program

Once you create an executable, you run it the way you do a normal UNIX
command, that is by typing its name followed by appropriate options or
parameters.

You must be aware that if you have not included “dot” (.) in your path,
whenever your executable is in a directory not explicitly included in your path,
you will need to prefix the executable name with ./ to run it. This was also
mentioned in section 9.6 Some Important Variables under PATH.

1. Keep all <n>-byte variables’ addresses an exact multiple of <n>, for example 0, 4, 8,...
for a 4-byte quantity.

Software Development 15-23

15.11 Debugging

15.11.1 dbx

dbx is a utility for source-level debugging and execution of programs written
in C, C++, and FORTRAN. dbx allows you to trace the execution of a
specified object file. You can step through a program on a line-by-line basis
while you examine the state of the execution environment.

Programs compiled with the -g option of cc (and other compilers) produce
an object file. This object file contains symbol table information, including the
names of all source files that the compiler translated to create the object file.

dbx also allows you to examine core files via its where command. A core
file contains the core image produced when the object file was executed,
providing information about the state of the program and the system when the
failure occurred. A core file named core is produced by default.

dbx commands can be stored in a start-up .dbxinit file that resides in the
current directory or in your home directory. dbx executes these commands just
before reading the symbol table.

There are some UNIX tools which provide a more sophisticated interface to
dbx. See your local system documentation for information on GUI-based dbx
tools. The product ddd (originally an interface for gdb) works as a front end
for dbx in its more recent releases. It is currently available at Fermilab as part
of the gcc product, but we expect to release it as a separate product soon. See
the DDD User’s Guide on the Web, document number DS0230.

Running dbx

To invoke dbx, enter the following command:

% dbx [options] [<object_file> [<corefile>]]

where <object_file> is the name of the file you want to debug.

Once dbx is running, you should see the (dbx) prompt. At this point you
can start issuing dbx commands.

Commands

There are many dbx commands, all described in the man pages. Some of the
basic commands are run, where, print, stop, list, cont, and
quit:

15-24 Software Development

run [<arguments>] Begin executing the object file, passing optional
command-line <arguments>. The
arguments can include input or output
redirection to a named file.

where [<n>] List all active functions on the stack, or only the
top <n>.

print [<expressions>]Print the values of one or more
comma-separated <expressions>. To print
values of two-dimensional FORTRAN array
elements use the format: print
<array_name>[1,2]

stop <restriction> [if <cond>]Stop execution if specified
<restriction> is true. Restrictions include
(this is a partial list):

 at (source line) <n>

 if <cond>

 in (procedure or function) <func>

<cond> (condition) is a Boolean expression; if
it evaluates to true, then execution is stopped.

list [<n>1 [,<n>2]] or list <func>

List the source text between lines <n>1 and
<n>2, or on lines surrounding the first statement
of <func>. With no arguments, list the next
ten lines.

cont [at <n>] [sig <signal>]Continue execution from the point at
which it was stopped if no arguments. Resume
from source line <n> or, if a <signal> name
or number is specified, resume process as if it
had received the signal.

status [> <file>] Show active trace, stop, and when
commands

delete [<n>] Remove traces, stops, and whens corresponding
to each command number <n>, given by
status. If <n> is all remove all.

quit Exit dbx.

Software Development 15-25

Example

You may want to start by using dbx to set some break points within your code.
To step through your code at the very beginning, you need to stop in the MAIN
routine if you are debugging an object file created from FORTRAN source
code (stop in main if your source is in C language). For example, you would
type:

(dbx) stop in MAIN

Now you can issue the run command to start execution of your object file.
You will get the process id and the name of the object file being executed.

(dbx) run

At this point, you may use the list command for the first 10-line listing of
the source code:

(dbx) list

Use the stop command to set break-points at various lines or procedures
within the object-file:

(dbx) stop at 10

(dbx) stop in sub123

(dbx) stop in sub456 if i == 24

The execution will stop in the example above at line 10, or in subroutine
sub123, or in subroutine sub456 when i is equal to 24. To continue
execution at any point in your debugging, issue the cont command:

(dbx) cont

To restart your debugging session, issue the rerun command:

(dbx) rerun

To exit dbx, type quit:

(dbx) quit

Usage Note

A user reports that when using dbx <object_file> core he has found
it useful to turn on all but one of the IEEE arithmetic traps, in order to stop
execution when the arithmetic fault occurs (instead of continuing with some
default action and then reporting that the following IEEE arithmetic flags had
been set). He located a spurious division by zero in this manner. The f77
man page for Solaris describes the necessary flag value on the f77 command
line: -ftrap=%all,no%inexact. We have not researched this for the
other UNIX flavors.

15-26 Software Development

15.11.2 gdb

gdb, a GNU product, can do four general types of things to help you debug
your programs:

• Start your program, and indicate anything that might affect its behavior.

• Make your program stop on specified conditions.

• Examine what has happened when your program stops.

• Modify your program, allowing you to experiment with correcting one
bug and go on to find another.

You can use gdb to debug programs written in C or C++.

You can also debug programs written in FORTRAN, although gdb does not yet
support entering expressions, printing values, or similar features using
FORTRAN syntax. Furthermore, it may be necessary to refer to some
variables with a trailing underscore.

See the document Debugging with GDB, document number PU0172. On the
CD home page, follow the documentation link.

15.11.3 purify

purify is a commercial product that detects memory corruption and finds
memory leaks in your executable programs. purify is currently available on
FNALU for Solaris. The command to run it is purify.

See the man pages for information on its syntax, options and uses.

The make Utility 16-1

Chapter 16: The make Utility

The UNIX make utility is a tool for organizing and facilitating the update of
executables or other files which are built from one or more constituent files.
Although make can be used in a wide variety of applications, in this chapter
we concentrate on its use in the area of software development. We describe
how to define relationships between source, object, library and executable files
for use by make, and how to invoke make in its simplest and slightly more
complex forms.

16.1 An Overview of the make Utility

make is a command execution utility. You can use it to essentially automate
any task in which one or more “target” file(s) requires updating via a shell
command when changes have been made to any of its “required” files (files
from which the targets are built). There is some preparation to do, but once
that is complete, all you do is enter the make command!

make compares the modification dates of target files to those of their required
files. For each file that needs updating, make issues the predefined update
command(s) for the file. For example, if file A is a required file of file B (the
target), and if file A has a more recent “last modified date” than file B, then
make re-makes file B by issuing the specified update command(s). Target files
that are found to be more recent than all their required files are skipped over.

make is especially useful in long-term software development projects that
involve large numbers of source files, libraries, and executables connected by a
complex set of relationships. You can use it with any programming language
whose compiler can be run with a shell command.

make obtains information about the files, their relationships, and the specific
update commands from one or both of the following:

• a specially formatted, user-supplied control file called the Makefile (see
section 16.2 The Makefile and its Components)

• make’s set of built-in default rules (see section 16.6 make’s Built-in
Rules)

16-2 The make Utility

In preparing to use make, you generally need to write a Makefile. The
Makefile defines the relationships among the constituent and target files of
your project by listing the required files for each target file, and stating the
shell commands that must operate on the required files to create or update the
target(s). make implicitly treats all required files as targets, in an iterative
manner. A file listed as a required file in one definition statement may also
explicitly appear as a target in another statement. For example, in a program,
typically the executable file (the final target) is created from object files, which
are in turn created by compiling source files. Once you have a working
Makefile, you just run the make program to perform all your updating tasks.

The make man pages give a full description of the command, its options and
features, as well as the format and usage of the Makefile.

16.2 The Makefile and its Components

The Makefile is a blueprint that you design and make uses to create or update
one or more target files based on the most recent modify dates of the required
files. The make command line syntax remains quite simple in the case
where a Makefile is used:

% make [-f <makefile_name>] [<other options>] [<targets>]

If the -f option is not used, make checks for a Makefile of a particular name:
it first looks in the current directory for a file named makefile, then for
Makefile. If the Makefile is still not found, make looks in a couple of other
places (see the man pages). In order to keep things simple and standard, we
recommend that you always use the filename Makefile for your
Makefile(s). Following this convention, you’ll have only one Makefile in a
directory. Your Makefile can contain instructions for building many different
targets. When executing make, you can specify the desired target(s) on the
make command line.

We can categorize the types of statements that can go in a Makefile as follows:

macro definition A macro is a name that you define to represent a
variable that may occur several times within the
Makefile.

target definition A target definition lists the target file, its required files,
and the commands to execute on the required files in
order to produce the target. (You can opt to specify the
totality of this information in separate target
definitions.)

The make Utility 16-3

suffix rules Suffix rules indicate the relationship between target and
source file suffixes (filename extensions). For example
in FORTRAN, object files (*.o) are created from
source files with a suffix of f (i.e. *.f). If no source
file is explicitly given on a target definition line, make
uses suffix rules to determine what source file to use to
produce the target.

suffix declarations Suffix declarations are lists of suffixes (file extensions)
used in suffix rules.

Each new line in the Makefile starts a new definition, except that in target
definitions:

• shell commands with leading tabs are part of the previous definition (a
standard Makefile format that you need to recognize, but that we suggest
you avoid using for reasons explained in section 16.2.2 Targets.)

• shell commands can be continued in standard UNIX format, using a
trailing backslash (\)

Blank lines are permitted between definitions. Comments can be included
after a pound sign (#). To use a literal pound sign, precede it with a backslash,
i.e. \#.

16.2.1 Macros

A macro is a name that you define to represent a variable that may occur
several times within the Makefile, or that needs to be updated frequently.
Macros make maintenance of your Makefile much easier. They are commonly
used to define settings, platform-specific commands, lists of required files for a
target, lists of command options, and so on. make reads all the macro
definitions before executing any commands. It is often convenient to put all
the macro definitions at the head of the Makefile, but this is not necessary.

16-4 The make Utility

Format and Usage

Macro definitions are of the form:

<macro_name> = <value>

where <macro_name> is the name you want to use in place of the longer
<value>. Everywhere in the Makefile that <macro_name> is found,
make substitutes <value>. For portability, if <value> contains any
blank spaces that it is supposed to have, the <value> string must be
enclosed in quotes in the definition statement.1 Backslashes can be used to
continue the same line; you cannot put a new line in a macro value.

Once a macro is defined, you refer to its value in the form
$(<macro_name>). If <macro_name> is a single character, you can
omit the parentheses.

As an example, let’s define a macro FFLAGS to set some FORTRAN default
options to use with the f77 command:

FFLAGS = "-O2 -w -Olimit 1500 -nocpp "

You can now refer to the value of FFLAGS within the Makefile in the form
$(FFLAGS). For example, you might include a target definition line like the
following (the format is explained below in section 16.2.2 Targets):

foo : foo.f ; f77 -o foo $(FFLAGS) foo.f

Special Macros

To be sure that make uses the standard, portable Bourne shell, always include
in your Makefile a macro of the form:

SHELL = /bin/sh

Some versions of make default to your current interactive shell if you don’t
include this explicit SHELL macro in your Makefile. The standard Makefile
format that we describe in this chapter assumes sh as the command interpreter.

Macro Sources

Macro definitions are similar to and can take default values from environment
variables. make gets additional macro definitions from the following sources,
and applies them in the order shown:

1) currently defined environment variables

1. Be aware that this quoted value is what make hands to the shell. The shell then hands
the macro, <e.g., $(FFLAGS) to a program to execute. If you want leading or trail-
ing spaces in <value> to be included in the command, specify the macro in double
quotes in the command statement, e.g., "$(FFLAGS)".

The make Utility 16-5

2) built-in make rules

3) definitions in the Makefile

4) definitions on the command line

In other words, this list is in order of reverse precedence; a value from a source
later in the list overrides a value applied from an earlier one. Using the -e
option on the make command line swaps the first two; see section 16.3.1
General Usage.

Symbols Used in Macros

$$ maps to a literal dollar sign

$* is used in suffix rules (see section 16.2.3 Suffix Rules); it refers to
the filename without the suffix

$@ is the current target make is processing

$< is the implied source in a suffix rule

16.2.2 Targets

Targets are the files that you want to update or create. A complete target
definition includes the name of the target, the files needed to build it (its
required files), and the commands that must be executed to recreate the target.

Format

The standard Makefile format using Bourne shell conventions calls for:

• a space between listed targets

• a colon (:) between the last target and the first required file

• a space between listed required files

• a semi-colon (;) after the last required file if commands follow on the
same line

• a semi-colon (;) between the successive listed commands

A simple target definition with a single target, required file, and command can
be written in the form:

<target> : <required_file> ; <shell_command>

or, using a more traditional format, listing the command on the next line (note
that the semicolon (;) is omitted here):

<target> : <required_file>

{tab}<shell_command>

16-6 The make Utility

In this traditional Makefile format, the commands beyond the first line of a
definition must have leading tabs, and there must be no intervening blank lines.

There are two reasons to avoid this second format: first, when working with
the Makefile it is hard to see the difference between a tab and blanks, and
secondly, some editors change tabs to blanks (or vice versa), which causes
problems (neither emacs in default mode nor vi changes tabs to blanks). You
can check your file to see if it contains tabs or blanks by running the command:

cat -tev <filename>

We propose as an alternative that you use the backslash character (\) to
continue the single definition line down as many physical lines as you have to
go. Also, note that under AIX the standard “tabbed” format can be
unpredictable; it is therefore safer for several reasons to use our suggested
format on this platform.

This “safer” format which we suggest if the entire definition doesn’t fit on the
first line is:

<target> : <required_file>; \

<shell_command>

A target definition line can contain more than one of each element type. Or, it
may contain only two of the three element types. A more complex definition
in our suggested format looks like:

If there is more than one target (e.g. <target_1> <target_2>) in one
definition, the commands are attempted separately for each target.

If you find it easier, you can list multiple required files for a single target in
separate target statements. However only one statement for a given target can
include commands, and therefore must include all the commands. Here is an
example of this alternative format:

<target_1> <target_2> ... : <required_file_1>
<required_file_2> ... <required_file_n> \

<required_file_n+1> ...; \

<shell_command_1> ; <shell_command_2> ; <shell_command_3>
; ... ; \

.

.

.

... ; <shell_command_m>

<target> : <required_file_1>

<target> : <required_file_2>

<target> : <required_file_3>

<target> : ; <shell_command_1> ; <shell_command_2> ;
<shell_command_3> ; ...

The make Utility 16-7

It can be confusing if you separate a series of statements like this from one
another in the Makefile; if you use this format, keep the statements together!

Usage

The relative modification times of the <target> and the
<required_file>(s) determine whether the listed commands will be
executed. If the target file is found to be missing or to be older than any of its
required files, make executes the commands to rebuild it. make treats the
required files iteratively as targets, whether or not they are explicitly listed as
targets in subsequent target definitions, and rebuilds them as necessary before
rebuilding the final target.

16.2.3 Suffix Rules

A suffix is essentially a file extension. A suffix rule defines the relationship
between target and required files by their file extensions. A suffix rule is much
like a target definition except that it uses implied rather than explicit file names
for target (output) and required (input) files.

A suffix rule is of the form:

.<insuffix>.<outsuffix> : ; <command>

The dots are really part of the suffixes themselves. As an example, assume you
have a set of target files to rebuild whose filenames are all of the form *.b.
The required files for these targets have filenames of the form *.a. Define
the suffix rule:

.a.b : ; <command(s)>

make expands this to the following target definition for all files ending in .a
in the current directory:

<filename>.b : <filename>.a ; <command>(s)

If you define suffix rules specifically for intermediate files in a process, you
still need to include a rule for the final and original files, for example, if you
define:

.tex.dvi: ; latex $* #latex cmd makes .dvi files
from .tex files

.dvi.ps: ; dvips $* #dvips cmd makes .ps files from

.dvi files

You still need to provide the rule:

.tex.ps: ; latex $*; dvips $* #make .ps files from

.tex files

make is not sophisticated enough to do the transitive closure on suffix rules.

16-8 The make Utility

Note that suffixes don’t have to start with a dot (.).

16.2.4 Suffix Declarations

Any suffix that you use in a suffix rule must be listed explicitly in a
.SUFFIXES declaration in the same Makefile unless it is included in make’s
built-in suffix declarations (see section 16.6 make’s Built-in Rules). A suffix
included in the built-ins can also be included in a suffix declaration in the
Makefile.

Suffix declarations are really target definitions for a special target named
.SUFFIXES and they contain no commands.1 They are of the format:

.SUFFIXES : .a .b

where .a and .b are suffixes. This example suffix declaration would
allow you to include the suffix rule from 16.2.3 Suffix Rules in your Makefile:

.a.b : ; <command(s)>

You may combine all the suffixes you use in the Makefile into one
.SUFFIXES declaration, or group them into separate statements.

Suffixes that you declare add to the built-ins; they do not replace them.

16.2.5 Control Files within a Makefile

You may encounter situations where it is useful to pipe input or output of one
command to another within a Makefile. You can echo a small control or data
file within the Makefile, rather than maintaining a separate external file. In the
following target definition example from an Isajet Makefile, several control
statements are echoed into the patchy utility in order to extract isaint.f
from the isajet.car patchy library:

 isaint.f : isajet.car ; \

 (echo "+USE,*ISAJET,$(MACHINE). "; \

 echo "+USE,INTERACT. INTERACTIVE PATCH "; \

 echo "+EXE. "; \

 echo "+PAM,T=C. "; \

 echo "+QUIT. ";)\

 | ypatchy isajet.car isaint.f \& genint.lis .GO

1. Most versions of make have other special targets (sometimes called magic targets)
besides .SUFFIXES. These special target names always start with a dot (.).

The make Utility 16-9

16.3 Running make

16.3.1 General Usage

The make utility is invoked with the make command. The command syntax
is:

% make [<options>] [<targets>]

Several <options> are available, and are described in the man pages for
make. We provide a list of some of the commonly used options:

-n Preview the commands, don’t execute. Very
useful for testing.

-d Debug; list the operations used and why (“read
make’s mind”). Available on all supported
platforms.

-e Environment variables override built-ins.

-f <makefile_name> If your Makefile has a name other than
makefile or Makefile, use this option
followed by the file’s name to identify it (leave a
space between the option and the filename).

-p -f /dev/null [|less]Print the built-in rules (see section 16.6
make’s Built-in Rules).

The <targets>, as mentioned earlier, are the files that you want to create or
update. make searches the Makefile to find a target definition statement for
each target listed on the command line.

You can include macro definitions on the command line which get applied
after the assignments made in the Makefile. For example:

% make "CC = gcc" <target>

16.3.2 Usage without Specifying Target

When make is invoked without a specified target, the first non-suffix target in
the Makefile is used. The command is simply:

% make [<options>]

For larger products, it is standard practice to name this target all in the
Makefile, and in the list of required files to list the individual targets which
together actually produce the full product. For example, the first Isajet target
definition is:

all : isadecay.dat \

16-10 The make Utility

 isatext.doc \

 isajet.a \

 isaint \

 isasusy

Notice that here no commands are listed. They would appear in the subsequent
target definitions.

16.3.3 Usage without a Makefile

The extensive built-in rules let you use make quite effectively without having
your own Makefile. Section 16.6 make’s Built-in Rules provides a brief
explanation of the built-in rules. make will look for any file whose name
matches that specified on the command line and which has a file extension that
identifies it as a reasonable source. For example, to produce the executable
foo (the target) from a foo.c or foo.f source that exists in the current
directory, enter:

% make foo

make will look for the C or FORTRAN file as the source file for this target.
Taking the FORTRAN program and no options as an example, this command
is equivalent to (see section 16.2.3 Suffix Rules):

% f77 -o foo foo.f

16.4 “Housekeeping” Targets

It is common practice to have a “housekeeping” target which removes stray
files from the working directories. Typically you would run make on this
target after you’ve completed the make operation on your principle target(s).
It is conventional to call this target clean. Here is an example which removes
unnecessary generated files from several different directories. The target
definition has no required files:

clean: ; \

 rm -f *.bak ;\

 rm -f *.lis ;\

 rm -rf Maketemp ;\

 cd example/isaplt ; rm -f *.lis* ;\

 cd ../jet ; rm -f jet.log*

You need to determine what stray files will be generated in your case, and
define your commands accordingly. Run make on the clean target by entering:

% make clean

The make Utility 16-11

You may wish to define different levels of housekeeping targets. One that
clears out everything, leaving only the original files you had before running
make, is often named clobber.

16.5 Portability

It is desirable for your Makefile to be portable across different UNIX
platforms. Why might this be a problem to implement? As mentioned earlier,
make does all macro processing before any commands are executed.
Therefore environment variables set in shell scripts executed by make have no
effect on make’s macro definitions. And standard make doesn’t support
conditional macro definitions. So, how can you write a portable Makefile?

A Solution

1) Create a script for setting environment variables.

2) Have make run this script (“source” it; see section 5.4 Shell Scripts)
from within the Makefile.

3) After it runs the script, have make rerun itself with a different target and
the original command line options. A $(MAKE) macro which causes
make to rerun itself is a standard feature.

An example of this technique follows.

Example

Create a portable shell script (named, for example, Makeenv) which sets
appropriate environment variables for the Makefile. Here is a simple
Makeenv script which defines the macro F77 based on the current platform
as determined by the command uname -s:

 export F77 MACHINE

 case `uname -s` in

 IRIX)

 F77="f77 -O2 -w -Olimit 1500 -nocpp "

 ;;

 OSF1)

 F77="f77 -O1 -w -Olimit 1500 -nocpp -static "

 ;;

 esac

16-12 The make Utility

The Makefile is below. Run make with the target isaint. The Makefile
runs Makeenv, then make reruns itself with the target do_isaint and the
correct F77 value:

 isaint : isaint.f ; . Makeenv; $(MAKE) do_isaint

 do_isaint : isaint.f ; $(F77) isaint.f -o isaint

Other Utilities

There are other utilities available for more complicated cases:

• gmake (Gnu make), part of the Fermilab gtools product, has some nice
portability features, and supports other advanced features like parallel
compilation on multiprocessor systems.

• There are preprocessors for building locally tailored Makefiles in very
sophisticated ways, including gnu configure, premake, and imake.

16.6 make’s Built-in Rules

make comes equipped with a long list of built-in defaults to make your job
easier. You are free to override any of them in your Makefile. The defaults fall
roughly into four categories:

1) macros that reflect your current environment variables

2) macros that define standard compilers and options

3) suffix rules for finding required files when building targets

4) a list of known suffixes

To get a listing of all the built-in macros and rules, enter the command:

% make -p -f /dev/null [| less]

Depending on your platform, there may be nearly a thousand lines of
definitions, so you might want to pipe this to less, or redirect the output to a
file.

The make Utility 16-13

16.7 A Few Caveats...

1) Recall that in the traditional Makefile target definition format successive
commands are entered on successive lines, each starting with a tab. Be
aware that each of these command lines runs in a different shell. Two
important implications of this are:

a) if you have issued a change directory (cd) command, it does not
carry over to the following line(s)

b) environment and shell variables do not carry over to the following
line(s). (The format which uses a single logical line for the entire
definition avoids this problem.)

2) If you use non-shell commands (for example ls) in definition
statements, be aware that the output may vary from platform to platform.
For this reason it is best not to rely on the specific output format of these
commands.

16-14 The make Utility

Code Management using CVS 17-1

Chapter 17: Code Management using CVS

This chapter introduces the recommended code management solution for
UNIX, CVS (Concurrent Versions System). Here we provide basic
information only; for more detailed information, see
http://www.fnal.gov/docs/products/cvs/.

17.1 About CVS

CVS uses RCS (Revision Control System) as the underlying protocol and
assumes availability of RCS commands. RCS provides a version control
system with which you can record the history of your source files. An RCS
file contains multiple revisions of text, an access list, a change log, descriptive
text, and some control attributes. Only the differences between versions are
kept.

The CVS product allows many programmers to work on the same code
simultaneously, each in his or her own directory, and it merges the changes
when they are finished. There is no built-in mechanism to prevent concurrent
development.

Users can create tags for release versions of software, and easily extract either
a release verision or the latest version.

CVS stores all files in a central repository, a directory populated with a
hierarchy of files and directories. The files are organized in modules, where a
module is made up of one or more files, and can include files from several
directories. It is typical to define one module per project. Although the
structure of the repository and modules file interact with your build system
(e.g., Makefiles), they are essentially independent.

17.2 Accessing CVS

To set up the CVS product:

% setup cvs

17-2 Code Management using CVS

The CVS document (in postscript format) can be found in the directory pointed
to by $CVS_DIR/doc. You can also find documentation on the Web for
CVS, as mentioned above.

Normally you never access files in a repository directly; you use the CVS
commands to get your own copy of files.

Note that CVS points to the editor defined in your EDITOR variable for entering
log messages (see the cvs commit command below). If it is not set, the
editor defaults to vi.

17.3 Basic CVS Commands

The common commands and their functions are listed below (we do not
provide information on options here; see the document referenced above):

% cvs import installs new release of source in CVS repository
the first time

% cvs co <module> creates new directory called <module>,
populates it with source files; this allows you to
“checkout” your own working copy of the
source <module>

% cvs checkout <module>equivalent to cvs co <module>

% cvs commit commits changes you have made; opens editing
session for entry of log message

% cvs rtag <release_number module>

tags a release

% cvs export -r <release_number module>

 extracts the specified release without CVS
administrative directories

UNIX at Fermilab IDX-1

Index

Symbols

 5-7
! 6-3, 6-7
- 7-5
!! 6-7
!$ 6-7
!? 6-7
!?text? 6-7
!n 6-7
!text 6-7
" 6-17, 9-4
5-6, 9-6
#! 5-6
$ 1-5, 5-3, 6-3, 6-5, 6-7, 6-17, 9-4, 9-9, 9-10, 9-11
% 1-5, 5-3, 6-20, 6-21
& 6-19, 9-5
&& 9-5
* 6-17, 7-6
+ 6-18
, 7-5
. 5-7, 6-17, 7-1, 7-2, 7-4, 7-5, 9-12, 9-18
.* 6-17
.. 7-1, 7-2, 7-4, 7-5, 7-21
./ 5-6, 9-12
.cshrc file 1-5, 5-7, 7-5, 7-27, 9-8, 9-15, 9-17

use with AFS 8-3
.emacs file 10-6

initialization file (emacs and xemacs) 10-6
.flpprc file 11-4
.login file 1-5, 6-9, 7-5, 9-2, 9-6, 9-15, 9-16, 9-17

use with AFS 8-3, 8-4
.logout file 3-7, 7-5, 9-15, 9-17
.mailcap file 4-8, 9-19

format 9-19
.plan file 4-11
.profile file 1-5, 6-9, 7-27, 9-2, 9-6, 9-17, 9-18

use with AFS 8-3
.shrc file 1-5, 5-2, 5-6, 5-7, 9-17, 9-18

use with AFS 8-3
/ 7-1, 7-2, 7-4, 7-5, 9-4
/etc/krb5.conf file 3-3

use with login program 3-3
; 9-5
< 6-10, 6-11
> 6-10, 6-11
>! 6-10, 6-11
>& 6-10, 6-11
>&! 6-10, 6-11
>> 6-10, 6-11

>>& 6-10, 6-11
? 6-18, 7-6
@ 9-6
[] 6-17
\ 6-3, 6-17, 9-4, 9-5, 15-13
^ 6-17, 9-6
^- 9-7
^> 9-7
_ 7-5
| 4-4, 6-10, 6-11, 6-13, 9-5
|| 9-5
~ 7-2, 7-4, 9-11, 15-16
’ 9-4

A

a2ps 4-4, 11-4
Absolute pathname 7-1
Access Control Lists 8-7
Access mode 7-24
Access permission, UNIX 7-24
Access to files, lose (AFS) 8-19
ACL rights 8-7
ACLs 8-7
Add command to search path 6-9
AFS 8-1, 9-7

"busy volume" error 8-20
Access Control Lists 8-7
ACLs 8-7
add/verify/del members of group 8-14
at 6-23, 8-4
change owner of group 8-13
combination rights (ACLs) 8-7, 8-9
create protection group 8-15
cron 6-23, 8-4
destroy token 8-4
determine if installed on system 8-2
examine quota 8-6
external processes unauthenticated 6-23, 8-4
file locking issues 8-18
file permissions 8-6
file system (fs) command 8-5
fs command options 8-5
group name format 8-8, 8-9
help on commands 8-5
list permissions 8-8
protection groups 8-7, 8-9

predefined 8-9
protection server (pts) command 8-10
remove a group 8-15
remove ACLs on directory 8-9
set permissions list 8-8
show owned groups 8-12
system:administrators group 8-10
system:anyuser group 8-4, 8-10
system:authuser group 8-10
translator mode 8-2
unlog 8-4
using find 8-19
view current tokens 8-4
Web page permissions 4-9

AFS authentication
for subprocesses 8-3

IDX-2 UNIX at Fermilab

AFS commands
man pages 4-4

AFS permissions
add/chg/del ACLs 8-8
for Web pages 8-9
list ACLs 8-8

AFS protection group
add/verify/del members 8-14

AFS space disk areas 8-6
AFS token (see Kerberos token) 8-3
Alias 6-3
alias 6-2, 7-19, 9-14
Andrew File System 8-1
ANSI C standard 15-2
ANSI standards 15-3
answerbook 4-6
apropos 4-5
Archive file 7-14
Arguments 6-5, 15-21
Arrow keys in ksh 9-3
asa 15-15
Assembler 15-2
at 6-22
authentication

UNIX
kerberos login program 3-3
standard login program 3-3

awk 6-13, 6-16, 6-17, 6-18, 15-5

B

Back quotes 9-4
Background jobs 6-18, 6-19

output redirection 6-19
Background processes 6-2, 6-19
Backslash character 9-4, 15-13
Backspace character 9-1
Backspace key 6-6

trouble with 9-2
bash 5-3
Batch processing

fbatch (Fermilab interface to LSF) 13-3
fbatch (Fermilab interface to LSF) 13-1
FCFS (First Come First Serve protocol) 13-2
FSS (Fair Share Scheduling) 13-2
host machine selection under LSF 13-2
job priority under LSF 13-2
job release threshold 13-2
job suspension threshold 13-2
load index 13-2
LSF (Load Sharing Facility) 13-1
nice value of queue 13-2
queues 13-2
resources for processing jobs 13-2
shares 13-2
time window for jobs 13-2

Berkeley Mail 12-2
bg 6-20
Bourne shell family 5-1, 9-14

. 9-18

.profile 1-5

.shrc 1-5
/bin/sh links to ksh 5-2, 5-6, 9-17

alias 9-18
execute command to affect current shell 9-18
Fermi files 9-17
shell functions 9-14

Bourne shell variables 9-10
define 9-10
export to environment 9-10

Browser commands 4-10
Browsers 4-7
bufio 15-16
Built-in commands 5-4, 6-1

help on 6-2
platform-specific 6-2

C

C 7-3, 15-2, 15-5, 15-22
arguments 15-21
cache usage 15-19
calling FORTRAN routines 15-21
compiler options 15-8
dbx 15-23
debugging 15-11, 15-23
extern struct 15-21
external names 15-21
feedback 15-19
file extensions 15-6
floating point errors 15-18
gdb debugger 15-26
Gnu C 15-3
indexes 15-20
inlining 15-19
interfacing with FORTRAN 15-19
IRIX 6 ABI choice 15-11, 15-20
library references 15-7
link editor 15-5
linking 15-22
list active compiler options 15-7
load map 15-12
pointers 15-21
speed optimization 15-11, 15-17
variables 15-20
word length 15-18

C compilers 15-5
C language 15-2
C preprocessor 15-13
C programs 15-5
C shell family 5-1

.cshrc 1-5

.login 1-5
alias 9-13
execute commands to affect current shell 9-17
Fermi files 9-15
fork new process 9-15
invoke new shell 9-15
variables set at startup 9-9

C++ 15-2, 15-3, 15-8
ANSI standards 15-3
compiler options 15-8
dbx 15-23
debugging 15-23
file extensions 15-8
gdb debugger 15-26

UNIX at Fermilab IDX-3

ISO standards 15-3
C++ language 15-2
Case sensitivity 15-16

commands 6-5
filenames 7-5

cat 6-13, 7-9, 11-6
format 7-10

CC 15-3, 15-8
cc 15-5
cd 6-2, 7-1, 7-3, 7-21, 8-2
cedit 6-6
C-FORTRAN

linking 15-22
mixed I/O 15-22

Change mode 7-25
Change password 2-6
changing your password 2-5
Character class 7-6
Character matching 6-17, 7-6
Characters, special 7-5, 9-4, 9-5
Child process 6-2, 9-8
chmod 5-6, 7-24, 7-25, 7-27, 8-6

absolute form 7-25
alternate form 7-26

clear 9-15
Clear the screen 9-15
Cluster 9-7
Code management 17-1

concurrent development 17-1
Command arguments 6-5

optional 6-4
Command files 5-1
Command format 6-4
Command interpretation by shell 6-3
Command interpreter 1-2
Command line editing 5-4, 6-6
Command line errors

correct typing 6-6
Command options 6-5
Command recall 6-6

cedit 6-6
Command separator 6-6

& 9-5
&& 9-5
; 9-5
| 9-5
|| 9-5

Commands 1-3, 6-1
AFS 8-5
alias 6-3
ambiguous 7-4
arguments 6-4, 6-5
built-in 5-4, 6-1
case-sensitivity 6-5
conditional 6-5
continue to next line 6-6
determining executable file 7-4
directory shortcuts 7-4
edit 6-6
filter 6-13
group 6-6
group options 6-5
history list 5-4
how shell finds them 6-9
interactive 6-1

locate via path variable 9-12
looping 6-5
option listing 4-4
options 6-4, 6-5
parentheses in 6-2
platform differences 6-5
recall 6-6
scripted 6-1
sequence of 5-5
type ahead 6-6

Comparison of editors 10-2
Comparison of shells 5-3
Compilers

C 15-5
C++ 15-3
FORTRAN 15-5

Completion mechanism 5-4
compress 7-16
Compression, file 7-16
Computing systems updates 4-10
Concatenate files 7-10
Concurrent Versions System 17-1
Conditional commands 6-5
Continue commands to new line 9-4
Control characters 9-1, 9-6

backspace 9-1
ctrl-c 9-1
ctrl-d 9-2
ctrl-o 9-2
ctrl-q 9-2
ctrl-r 9-2
ctrl-s 9-2
ctrl-w 9-1
ctrl-x 9-1
ctrl-z 9-2
DEL 9-1

Copy a file 7-11
Copy to archive file 7-14
Core file 15-23
Correct command typos 6-6
Count characters in file 7-19
Count lines of file 7-19
Count words in file 7-19
cp 7-11, 7-12, 9-13

format and options 7-11
cpp 15-13
Create a directory 7-22
Create Web page 4-9
cron 6-23
crontab 6-23
CRYPTOCard 2-1, 2-5, 3-5

X terminal 2-1
csh 5-3, 6-6

reexecution commands 6-7
ctrl-] 6-8
ctrl-c 9-1
ctrl-d 5-3, 6-10, 9-2
ctrl-o 9-2
ctrl-q 9-2
ctrl-r 9-2
ctrl-s 9-2
ctrl-w 9-1
ctrl-x 9-1
ctrl-z 6-21, 9-2
Current directory 7-1, 7-2, 7-5, 7-21

IDX-4 UNIX at Fermilab

Current shell, determine 5-1
Customer Support 4-1
Customized code, storage of 9-18
CVS 17-1

common commands 17-2
documentation 17-1
editor 17-2

cvs checkout 17-2
cvs commit 17-2
cvs export 17-2
cvs import 17-2
cvs rtag 17-2

D

DAFT 14-2, 15-16
Database manipulation 6-16
dbx 15-23

commands 15-23
ddd interface 15-23
format 15-23
GUI front ends 15-23

dd 14-4
ddd debugger interface 15-23
Debugging 15-23

dbx 15-23
gdb 15-26
purify 15-26

Default shell 9-13
DEL 9-1
Delete a directory 7-14, 7-23
Delete a file 7-14
Delete key 6-6

trouble with 9-2
Delimiters 9-5
Devices

logical 6-10
null 6-11, 6-13

df 8-2
Directory 4-11

change working directory 7-21
create 7-22
current 7-1
delete 7-23
format of listing 7-9
home 7-2, 7-3, 7-21, 15-16
link 7-9, 7-12
list contents 7-8, 7-21
make 7-22
manipulate 7-21
mode 7-9
move 7-23
parent 7-21
permissions 7-27

AFS 8-7
print working directory 7-21
protection 7-24
reference 7-12
remove 7-23
root 1-6, 9-4
shortcut commands 7-2
shortcuts 7-4
working 7-1

Directory files 7-5
Directory permissions 7-24

AFS 8-7
AFS protection groups 8-9
change 7-25

disk areas in AFS space 8-6
Display current terminal settings 9-2
Display file contents 7-9
Display multimedia files 9-19
Display output 6-14
Display status of processes 6-2
DISPLAY variable 4-7, 9-11, 10-2
Display variables

set 9-11
Display, restart 9-2
Distributed file systems 1-6

AFS 8-1
Domain name 4-6
domainname 9-7
Dot (in pathname) 7-2
Double quotes 6-3, 9-4
Double-sided printing 11-5
Dump a file 7-20
Duplex print mode 11-5
dxbook 4-6

E

echo 5-1, 6-3, 7-3, 7-7, 7-14, 9-9, 9-11
ed 6-17
Edit commands 6-6
Edit files, can’t 8-19
Editing

command line 5-4
multiline 5-4

EDITOR variable 6-8
Editors 10-1, 10-2

comparison of 10-2
EDT+ 9-3, 10-1, 10-2, 11-6
egrep 6-18
emacs 6-8, 9-3, 10-1, 10-2, 11-6

commands 10-4
file extension-language map 10-6
flow control 10-6
help facility 10-4
initialization file 10-6
key bindings 10-6
pros and cons 10-2

encrypted connection
changing password over 2-5

End-of-file 6-10
env 5-1, 7-19, 9-9
ENV variable 9-17
Environment

customize 9-15
Environment for UNIX process 9-8
Environment variables 9-8, 9-9
eof 3-7, 6-10, 9-2
Erase screen contents 9-15
exec 6-2
Executable files 6-9
Executables 6-1

run from current directory 9-12

UNIX at Fermilab IDX-5

Execute a program 15-22
Execute permission 7-9, 7-24

directory 7-27
file 7-24

Execute shell script 5-7
exit 3-6, 5-3
Exit a shell 5-3
Exit UNIX 3-6
exmh 12-2
Expansion, file 7-16
export 1-5, 9-10
Expressions, regular 6-17
Extensions on filenames 7-6
EXTERNAL http

//www.fnal.gov/cd/UNIX/UnixResources.html#Code
15-1

External names 15-21

F

f77 15-5
option passing 15-7

fbatch
Fermilab interface to LSF 13-3

fbatch
Fermilab interface to LSF 13-1
Kerberos token renewal 8-3

Fermi files 1-4, 9-15
Bourne shell family 9-17

.profile 9-17

.shrc 9-18
fermi.profile 9-18
fermi.shrc 9-18

C shell family 9-15
.cshrc 9-15, 9-16
.login 9-15, 9-16
.logout 9-15, 9-17
fermi.cshrc 9-16
fermi.login 9-16

Fermi UNIX Environment 1-3
brief description 1-3

fermi.cshrc file 9-16
fermi.login file 9-16
fermi.profile file 9-18
fermi.shrc file 9-18
Fermilab Customer Support 4-1
Fermilab helpdesk 4-1
Fermilab systems-related information 4-10
fermitpu 9-3, 10-1, 10-2, 11-6
fg 6-20, 6-21
file 4-8, 7-16, 7-20

format 7-21
File expansion 9-5
File locking in AFS 8-18
File overwrite protection 9-13
File permissions 7-24

change 7-25
in AFS 8-6

File protection 7-24
File specifications 7-5
File systems 1-3, 1-6

AFS 8-1
distributed 1-6

NIS 5-2
primary 1-6
root 7-1
standard UNIX 1-6, 5-2

File type, determine 7-20
Filename expansion 6-3, 6-17

turn off (in csh) 7-7
Filename extensions 7-6
Filenames 7-1, 7-5, 7-9

extensions 7-5
using dash (-) in 7-5

Files 7-5
access permission 7-24
audio 9-19
browse 7-10
command 5-1
compression 7-16
concatenate 7-10
copy 7-11
delete 7-14
determine file type 7-20
directory 7-5
display beginning 7-10
display contents 7-9
display end 7-10
dump 7-20
executable 6-9
expansion 7-16
find 7-17
hidden 7-5, 9-15
image 9-19
link 7-9, 7-12
list contents 7-10
list directory contents 7-8, 7-21
list in reverse date order 7-8
MIME types 9-19
mode 7-9
move 7-12
ordinary 7-5
overwrite 7-5
print 11-1
reference 7-12
remove 7-14
rename 7-12
search contents for pattern 6-16
search for 7-17
searching 7-18
set permission at file creation 7-26
size 7-9
sort lines in 6-16
tar 7-16
versions 7-5
video 9-19

Files, can’t access 8-19
Filters 6-13

awk 6-16
grep 6-16
less 4-4, 6-14
more 6-14
sort 6-16

find 7-16, 7-17
caution for AFS 8-19
format and options 7-17

finger 4-11, 5-1
.plan 4-11

IDX-6 UNIX at Fermilab

on the Web 4-11
FLPHOST variable 11-1
flpk 11-1
flpq 11-1
FLPQUE variable 11-1
flpr 4-4, 11-1, 11-7

defaults 11-4
options 11-2

flpr.defaults file 11-4
FMB 14-2
FNALU 9-7

AFS 8-1
batch system (LSF) 13-1

Foreground jobs 6-18
Fork a process 6-2
Format

command 6-4
Formatting

man pages 4-3
FORTRAN 7-3, 15-2, 15-3, 15-5

adding library symbol tables 15-16
arguments 15-21
asa 15-15
automatic variables 15-13
BLOCKDATA 15-16
BLOCKDATA modules 15-14
cache usage 15-19
calling C routines 15-21
carriage control characters 15-15
character special files 15-17
command line arguments 15-15
COMMON 15-21
compiler options 15-8
compilers 15-5
compiling files separately 15-14
conditional compilation 15-13
converting output to ASCII text 15-15
copying value of variables 15-15
cpp 15-13
dbx 15-23
debugging 15-11, 15-23
environment variables 15-15
executing a program 15-22
external names 15-21
external references 15-14
extracting programs 15-14
feedback 15-19
file extensions 15-6
floating point errors 15-18
force loading of a library routine 15-16
formatted records 15-17
fsplit 15-14
gdb debugger 15-26
GETENV 15-15
I/O 15-17, 15-22
include files 15-13
INCLUDE statement 15-13
indexes 15-20
initializing variables in COMMON 15-14
inlining 15-19
interfacing with C 15-19
IRIX 6 ABI choice 15-11, 15-20
library references 15-7
linking 15-22
list active compiler options 15-7

load map 15-12
macro expansion 15-13
option passing 15-7
passing options to next stage 15-7
printing 15-15
program execution 15-22
record handling 15-17
retaining local variables 15-13
SAVE statements 15-13
source code listing 15-12
source inclusion 15-13
speed optimization 15-11, 15-17
standard input and output 15-17
static variables 15-13
tape files 15-17
unformatted records 15-17
variables 15-20
word length 15-18

FORTRAN 90 15-15
FORTRAN-C

linking 15-22
mixed I/O 15-22

Forward slash character 9-4
fs listacl 8-8
fs listquota 8-6
fs setacl 8-5, 8-8
fsplit 15-14
ftp 4-6, 4-8
FTT 14-1
FUE 1-3, 1-4, 9-15
FUE description 1-3
funame 9-18

G

g++ 15-3
g77 15-5
gawk 5-7, 6-16
gcc 15-3, 15-5

ddd debug interface 15-23
gdb 15-26
Getting help 4-1
GNU C 15-3
GNU make 16-12
gopher 4-8
grep 5-2, 6-13, 6-16, 6-17, 7-16, 7-18, 8-2

format and options 7-18
groff 4-3
Group permission 7-25

in AFS 8-7
Grouping commands 6-6
Groups in AFS 8-9
gtools 16-12
gunzip 7-16
gzip 7-16

H

Hard link 7-13
hash 5-6, 6-9
Hash table 5-6
head 7-9, 7-10

UNIX at Fermilab IDX-7

format and options 7-10
Help on AFS commands 4-4
Help on filenames 4-5
Help on shell commands 6-2
Helpdesk 4-1
Hidden files 7-5, 9-15
history 6-6
History list 5-4
history variable 9-16
Home directory 7-1, 7-2, 7-3, 7-21, 15-16

~ 9-11
HOME variable 9-11

Home page 4-8
HOME variable 7-3, 7-4, 9-11
home variable 9-9
Host name 4-6
HTML files 4-7, 4-9
http 4-8
HyperText Markup Language 4-7

I

I/O 6-13, 15-22
C 15-22
FORTRAN 15-22

I/O redirection 6-3, 6-10, 6-11
failure 6-11, 6-12
grouping 6-11, 6-13
input 6-11
suppress output 6-11

ignoreeof 3-7
Info 4-10
info(AIX) 4-6
Information distribution system 9-7
Inode number 7-5
Inode table 7-5
Input redirection 6-10, 6-11
Input/Output redirection 9-5
insight 4-6
Interactive command entry 6-1
Interface to LSF (fbatch) 13-3
Interfacing C and FORTRAN 15-19
Internet 4-6

domain name 4-6
ftp 4-6
host name 4-6
IP address 4-6
mail 4-6
navigation tools 4-6
news 4-6
services 4-6
telnet 4-6
WWW 4-6

Interpretation of commands by shell 6-3
Interpretive language

awk 6-16
Interpretive programming language 5-1, 5-5, 5-7
Interrupt process 9-1
IP address 4-6
ISO standards 15-3

J

Jobs
background 6-18, 6-19
foreground 6-18
kill 6-21
list 6-20
move to background 6-21
move to foreground 6-21
priority 6-19
scheduling 6-22, 6-23
start in background 6-19
stop 6-20
stop 6-21
suspend 6-20, 6-21
terminate 6-21

jobs 6-20

K

Kerberos token
destroy 8-4
for batch execution 8-3
pass to subprocesses 8-3

Kernel 1-3, 5-1
Keys, special 9-1
kill 6-20, 6-21
kinit command 3-3
klog 8-19
knews 4-10
ksh 5-3

arrow keys 9-3

L

LAN 1-6
Languages, programming 15-2
ld 15-5
less 4-4, 6-13, 6-14, 7-9, 7-20

/pattern 6-15
format 7-10

lex 15-5
Link directories 7-12
Link editor 15-5
Link files 7-12
Links 7-9, 7-12

hard 7-13
symbolic 7-13

List jobs 6-20
Literal interpretation of character 9-4
Literal string interpretation 9-4
ln 7-12

format and options 7-12
Load map 15-12
Load Sharing Facility (LSF) 13-1
Local area network 1-6
Local interface to LSF (fbatch) 13-3
Log in 9-8
Log out 3-6, 3-7

ctrl-d 3-7
terminate processes 3-7

IDX-8 UNIX at Fermilab

logdir 7-2, 15-16
Logical devices 6-10
Login directory 7-1, 7-21
Login files 9-8, 9-15
login name 3-6
login program

Kerberos 3-3
kerberos 3-3
standard UNIX 3-3

Login scripts 1-4
login without Kerberos 3-4
logout 3-6
Looping commands 6-5
lp 11-7
lpr 11-1, 11-7
ls 4-2, 6-11, 6-12, 7-5, 7-7, 7-8, 7-21, 7-24

format and options 7-8
lynx 4-7

M

m 6-7
Macro 16-2

format in Makefile 16-4
Magic file 7-20
Magic numbers 7-20
Mail 4-6

reply-to address 12-6
Mail forwarding

set on external nodes 12-6
Mail systems

exmh 12-2
MH 12-2
mh 12-2

mailto 4-8
Maintain customized code 9-18
make 16-1

$MAKE macro 16-11
action 16-12
built-in rules 16-4, 16-12
command syntax 16-9
defaults 16-12
environment variables 16-11
GNU make 16-12
list built-in macros and rules 16-12
macro 16-2
Makefile 16-2
options 16-9
remove stray files 16-10
suffix definition 16-2
suffix rule 16-2
target 16-2
use without Makefile 16-10

Makefile 16-1, 16-2, 17-1
blank lines in 16-3
commands and shells 16-13
definition types 16-2
environment variables 16-13
file modification times 16-7
first target (default) 16-9
housekeeping target 16-10
implied target 16-7
including control files 16-8

macro 16-2
format 16-4
sources 16-4

portability 16-11
preprocessors 16-12
remove stray files 16-10
required files 16-5
shell commands in 16-3
shell variables 16-13
special macros 16-4
SUFFIX declaration 16-2, 16-8
suffix rule 16-2, 16-7
tabs in 16-6
tabs vs. blanks 16-6
target 16-2
target "all" 16-9
target definition 16-5, 16-6

format 16-5
platform variance 16-13
successive commands 16-13

target usage 16-7
use of line continuation character 16-6
variables 16-3

man 4-2
AFS commands 4-4

man page formatting 4-3
man pages 4-2

built-in commands 6-2
directories 9-12
exit 4-4
filename option 4-5
keyword option 4-5
print 4-4
quit 4-4
search for pattern 4-4
shell commands 6-2

MANPATH variable 9-12, 9-17
Match characters in regular expressions 6-17
Match single character 7-6
Memory corruption 15-26
Memory leaks 15-26
Metacharacters 6-10, 7-5, 9-4, 9-5
MH 12-2
mh 12-2
MIME 9-19
mime.types file 4-8, 9-19

format 9-20
mkdir 7-22
Mode 7-9
Mode bits 7-24
more 6-13, 6-14, 7-9, 7-11, 7-20

format 7-10
Mosaic 4-7
Mount point 1-6
Mount tapes 14-2, 14-9
Move a directory 7-23
Move a file 7-12
Multimedia support 9-19
MultiNet 4-11
Multiple commands on a line 6-6
Multipurpose Internet Mail Extensions 9-19
mv 7-12, 7-23, 9-13

format and options 7-12
mvdir 7-23

format 7-23

UNIX at Fermilab IDX-9

N

nawk 6-16
NEdit 9-3, 10-1, 10-2, 11-6

commands 10-12
pros and cons 10-2

NetNews 4-10
Netscape 4-7
Network Information System 9-7
News 4-6
News 4-10
news 4-8
Newsgroups 4-10
Newsreaders 4-10
NFS 9-7
nice 6-19, 13-2
NIS 9-7

password file 2-6
NIS map 3-3
nn 4-10
noclobber variable 6-11, 6-12, 9-13
noglob variable 7-7
nonKerberized login 3-4
Non-printable characters, in file dump 7-20
nroff 4-3
nu/TPU 9-3, 10-1, 10-2, 11-6
Null device 6-11, 6-13

O

oawk 6-16
obtain printcap 11-7
OCS

X interface 14-8
OCS 14-2

X interface 14-7
ocs_allocate 14-4, 14-6
ocs_broken 14-3
ocs_check_label 14-4
ocs_clean_it 14-3
ocs_clean_list 14-3
ocs_deallocate 14-6
ocs_devfile 14-4
ocs_devstat 14-3, 14-5
ocs_dismount 14-6
ocs_init_stat 14-3
ocs_message 14-3
ocs_mrlog 14-3
ocs_pending 14-3
ocs_report_stat 14-3
ocs_request 14-4
ocs_setdev 14-4
ocs_stats 14-3
ocs_tape 14-3, 14-4
od 7-16, 7-20

format and options 7-20
Online help

apropos 4-5
man pages 4-2
UNIXHelp 4-9
vendor-provided utilities 4-6

Operator Communications Software (OCS) 14-2

Option passing 15-7
Options 6-5

grouping 6-5
separator 6-5

Ordinary files 7-5
Other permission 7-25
Output

display screen by screen 6-14
Output redirection 6-10, 9-13

background jobs 6-19
force overwrite 6-11
overwrite existing file 6-11

Output, suppress 6-11, 6-13
Overwrite file protection 9-13
Overwrite files 7-5
Owner permission 7-25

P

p 6-7
pack 7-16
pagsh 8-19
Parent directory 7-5, 7-21
Parent process 6-2, 9-8
Parentheses in commands 6-2
passwd 2-4
passwd file 3-3
Password 2-6

change 2-6
NIS 2-6

password 3-3
changing 2-5
encrypted connection 2-5
non-reusable (portal mode) 3-5
standard UNIX 3-3

Password entry file 5-2
Password file, NIS 2-6
Path 6-9
Path name separator 9-4
PATH variable 5-6, 6-9, 9-12, 9-17

include dot . 9-12
path variable 6-9, 9-9
Pathname 7-1

absolute 7-1
relative 7-1

Pattern, search for 6-15
Pattern-matching characters 9-5
perl 5-7, 15-2, 15-4
Permissions 7-9, 7-24

AFS 7-24, 8-7
AFS combination rights 8-7
change 7-25
determine current settings 7-24
directory 7-27
file access 7-24
group 7-25
other 7-25
owner (user) 7-25
set when file is created 7-26

Personnel directories 4-11
pine 12-2

configuration 12-2
printing configuration 12-5

IDX-10 UNIX at Fermilab

suggested options 12-4
Pipe output of commands on a line 9-5
Pipeline 6-13
Pipes 4-4, 6-13
Pointers 15-21
portal mode 3-3

discussion 3-5
X terminal 2-1

POSIX standards 15-2
Postscript files

printing duplex 11-6
pr 11-4
Pre-print options 11-4

a2ps 11-4
pr 11-4
psnup 11-4

Prevent interpretation of special characters 6-3
Preview command 6-7
principal 3-6
printcap file 11-7
printenv 9-9
Printing 11-1

ascii to postscript 11-4
both sides of paper 11-5
check queue 11-1
duplex mode 11-5, 11-6
flpr 11-1
kill job 11-1
postscript files in duplex mode 11-6
text files in duplex mode 11-6

Printing man page 4-4
Priority 6-19
Process 6-18

background 6-2, 6-19
child 6-2, 9-8
display status 6-2
fork 6-2
interrupt 9-1
move to background 9-2
parent 6-2, 9-8
subprocess 6-2
suspend 9-2

Program execution 15-22
Programming languages 15-2
Programming languages, interpretive 5-7
Programs 6-1
Prompt

default 5-3
FNALU 5-3
shell 5-3

Protection groups
change owner 8-13
create 8-15
in AFS 8-7
remove 8-15
show groups by owner 8-12

Protection, file and directory 7-24
ps 5-1, 6-2, 6-20, 7-19
psnup 11-4
pts 8-10
Public domain shells 5-4
purify 15-26
pwd 6-2, 6-11, 6-12, 7-21
Python 15-2, 15-4

Q

Queue, batch (under LSF) 13-2
Quotes

back 9-4
double 9-4
single 9-4

Quoting character (backslash) 6-6, 9-4

R

RBIO 14-2, 15-16
RCS 17-1
Read permission 7-9, 7-14, 7-24

directory 7-27
file 7-24

Recall commands 6-6
Redirect output 6-6

to file and to a command 6-13
Redirection metacharacters 6-10
Redirection of I/O 6-3, 6-10, 6-11, 9-13

failure 6-12
force overwrite 6-11
grouping 6-11, 6-13
overwrite existing file 6-11
suppress error 6-11
suppress output 6-13

Reexecution commands 6-7
preview 6-7
substitute 6-7

Reference directories 7-12
Reference files 7-12
Regular expressions 6-3, 6-17, 7-19, 9-5
rehash 5-6, 6-9
Relative pathname 7-1
Remove a directory 7-14, 7-23
Remove a file 7-14
Rename a file 7-12
Replace variable name with value 6-3
Reply address for mail 12-6
Required file 16-1
Restart display 9-2
Restore from archive file 7-14
Retrieve from archive file 7-14
Revision Control System 17-1
RISC-based UNIX systems 15-2
rlogin 8-19
rm 7-14, 7-23

format and options 7-14
rmdir 7-23
rn 4-10
Root 7-1
Root directory 1-6, 9-4
Run executables from current directory 9-12

S

s 6-7
savehist 6-6
savehist variable 9-16
Scheduling jobs 6-22, 6-23

UNIX at Fermilab IDX-11

Screen, clear 9-15
Script execution 5-7
Script, shell 5-5
Scripted command entry 6-1
Scripts

as job 6-18
default shell 5-6
execution 5-6
shell 5-1
source 5-7

Search engines 4-9
Search for files 7-17
Search for pattern 6-15, 6-16, 7-18
Search on text patterns 6-17
Search on users 4-11
Search path 6-9

add command 6-9
sed 6-17, 15-5
Separate commands on a line 9-5
Separator, path name 9-4
set 6-2, 9-8, 9-11
set correct 6-8
set prompt 1-5
setenv 9-9, 11-3
setpath.csh 9-12
setpath.sh 9-12
setup 14-1
sh 5-3, 7-2

/bin/sh links to ksh 5-2, 5-6, 9-17
Shell 1-2, 1-3

default 9-13
Shell choice 5-3
Shell command 6-1

help on 6-2
platform-specific 6-2

Shell comparison 5-3
Shell features 5-3
Shell functions 9-14
Shell program 5-3
Shell prompt 1-5, 5-3
Shell script execution 5-7
Shell scripts 5-1, 5-5, 6-1

affect current shell 5-7
default shell 5-6
execution 5-6
source 5-7

Shell support policy 5-5
SHELL variable 9-13
Shell variables 5-4, 9-8

PS1 variable 1-5
Shell, current 5-1
Shells 5-1

bash 5-3
Bourne family 5-1
C family 5-1
command interpretation 6-3
completion mechanism 5-4
csh 5-3
exit 5-3
features 5-3
finding commands 9-12
interpretive programming language 5-5
Korn 5-1
ksh 5-3
public domain 5-4

sh 5-3
start 5-2
supported 5-5
tcsh 5-3
vendor 5-4
zsh 5-3

shells 5-7, 15-4
Single back quotes 9-4
Single quotes 6-3, 7-19, 9-4
Size of file 7-9
sort 6-13, 6-16
Sort lines in files 6-16
source 5-7, 6-2, 9-17, 9-18
Special characters 7-5, 7-19, 9-4, 9-5

extended set 6-18
prevent interpretation 6-3

Special keys 9-1
Special symbols 6-17
Specify terminal type 9-5
Standard error 6-10, 6-11
Standard input 6-10, 6-11

get from stdout of previous command 6-13
Standard output 6-10, 6-11

connect to stdin of next command 6-13
Start a shell 5-2
Start display 9-2
start key 9-2
stderr 6-10, 15-17
stdin 6-10, 15-17
stdout 6-10, 15-17, 15-22
stop 6-20, 6-21
Stop terminal output 9-2
Stopped jobs 3-7, 6-20
Store to archive file 7-14
Storing temporary files 7-28
strengthened machine

connection from untrusted machine 3-5, 3-6
logging on via portal mode 3-5

String, literal interpretation 9-4
stty 2-3, 6-20, 9-2, 9-6

^- 9-7
^> 9-7
tostop 6-20

Subprocess 6-2
Subshell 5-2
Substitute output for string 9-4
Substitute string in command 6-7
Suffix declaration 16-2
Suffix rule 16-2
Support policy for shells 5-5
Supported shells 5-5
Suspend process 9-2
Suspended jobs 6-20
Symbolic link 7-13
System calls 6-1
Systems updates 4-10

T

Tabs 9-2
tabs 9-2
tail 7-9, 7-10

format and options 7-10

IDX-12 UNIX at Fermilab

Tape drive
allocate 14-2
manipulate 14-7
mount request 14-2, 14-9
use statistics 14-2
view mount requests 14-8

Tape I/O packages 14-2
Tape mount 14-2, 14-9
Tapes

operator assisted mounts 14-2
tar 7-14
tar command 7-14
Tar files 7-16
Target 16-1, 16-2
Tcl/Tk 15-4
tcsh 5-3
tee 6-13
telnet 4-6, 8-19
Temporary disk 7-28
term variable 9-9
Terminal control functions 9-1

set 9-6
Terminal output, stop 9-2
Terminal settings

display 9-2
Terminal type

specify 9-5
Terminate processes at logout 3-7
Text patterns

search on 6-17
Tilde 7-2, 9-11, 15-16
Tk 15-2, 15-4
TMPDIR variable 7-28
Token

destroy 8-4
tokens 8-4
tostop 6-20
trn 4-10
Type ahead 6-6

U

UCM 17-1
umask 7-26
Universal Resource Locator 4-8
UNIX

logging on at console 3-3
login program (standard) 3-3

UNIX cluster 9-7
UNIX Code Management 17-1
UNIX password 3-3
UNIX process, environment 9-8
UNIX prompt 1-5, 5-3
UNIX Reference Desk 4-9
UNIX shell 9-8
UNIXHelp 4-9
unlog 8-4
unset 9-8, 9-10
Updating files 16-1
UPS products

tape mounting and I/O 14-1
URL 4-8
Usenet News 4-10

user variable 9-9
Users, information on 4-11, 4-12

V

Variable name replacement 6-3
Variable types 15-20
Variables

Bourne shell family 9-10
C shell family 9-8
define in Bourne shell 9-10
delete 9-8
display value 9-9
environment 9-8, 9-9
shell 5-4, 9-8
unset 9-8

Vendor shells 5-4
Vendor-provided online help 4-6
Version control system 17-1
Versions of files 7-5
vi 6-8, 6-17, 9-3, 10-1, 10-2, 11-6

commands 10-3
pros and cons 10-2

W

wc 7-16, 7-19
Web Browsers 4-7
Web site 4-8
whatis 4-5
where 15-23
which 7-4
White space 6-5

in command interpretation 6-3
who 4-12, 6-11, 6-12, 6-13, 7-19
who am i 4-12
Wildcard replacement 6-3
Wildcards 6-17, 9-5
Working directory 7-1
World Wide Web 4-7
Write permission 7-9, 7-14, 7-24

directory 7-27
file 7-24

WWW 4-6, 4-7
addresses 4-8
AFS permissions for Web pages 4-9, 8-9
browser commands 4-10
browsers 4-7
create Web page 4-9
directories 4-11
file 4-8
ftp 4-8
gopher 4-8
HTML files 4-7, 4-9
http addresses 4-8
links 4-8, 4-9
mailto 4-8
news 4-8
newsgroups 4-10
protocol 4-8
search engines 4-9
UNIX Reference Desk 4-9

UNIX at Fermilab IDX-13

UNIXHelp 4-9
URL 4-8, 4-9

www 4-7, 9-19
WWW Browsers 4-7

lynx 4-7
mosaic 4-7
netscape 4-7
www 4-7

WWW directories 4-11

X

X display
DISPLAY variable 10-2

X terminal 2-1
X windows applications

DISPLAY variable 9-11
X11 toolkit

Tk 15-4
X-based browser commands 4-10
xemacs 10-4

commands 10-9
file extension-language map 10-6
initialization file 10-6
oo-Browser 10-9
pros and cons 10-2

xlf 15-5
xocs 14-7
xrn 4-10
xtapeview 14-8

Y

yacc 15-5
Yellow pages 9-7
ypmatch 5-2
yppasswd 2-6

Z

zsh 5-3

IDX-14 UNIX at Fermilab

